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Abstract. Let F be a field of characteristic 6= 2. The u-invariant of the
field F is defined as the maximal dimension of anisotropic quadratic forms
over F . It is well known that the u-invariant cannot be equal to 3, 5, or
7. We construct a field F with u-invariant 9. It is the first example of a
field with odd u-invariant > 1. The proof uses the computation of the third
Chow group of projective quadrics Xφ corresponding to quadratic forms φ.

We compute CH3(Xφ) completely except for the case dimφ = 8. In our
computation we use the results of B. Kahn, M. Rost, and R. Sujatha on the
unramified cohomology and the third Chow group of quadrics ([KRS1]). We
compute the unramified cohomologyH 4

nr(F (φ)/F ) for all forms of dimension
≥ 9. We apply our results to prove several conjectures. In particular, we
prove a conjecture of Bruno Kahn on the classification of forms of height 2
and degree 3 for all fields of characteristic zero.
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0. Introduction

Let F be a field of characteristic 6= 2, and let φ = a1x
2
1 + · · · + anx

2
n be a

quadratic form over F . We always assume that the forms under consideration
are nondegenerate. The form φ is called isotropic if the homogeneous equation
a1x

2
1 + · · ·+ anx

2
n = 0 has a nontrivial solution. Otherwise, the form φ is called

anisotropic. The u-invariant of the field F is defined as the maximal dimension
of anisotropic quadratic forms over F :

u(F ) = sup{dimφ | φ is an anisotropic form over F}.
Since many questions about a quadratic form can be reduced to that about its
anisotropic part, u(F ) is a fundamental measure of the complexity of quadratic
form theory over F . However, u(F ) is often very difficult to determine, and
its value is unknown for many fields. Nevertheless, in the following cases the
u-invariant is known:

• If F is a quadratically closed field, then u(F ) = 1. In particular, u(C) = 1.
• If F is a formally real field, then u(F ) = ∞. In particular, u(Q) = ∞ and
u(R) = ∞.

• If F is a finite field, then u(F ) = 2.
• If F is a local field, then u(F ) = 4.
• If F is a nonreal global field, then u(F ) = 4. In particular, u(Q(i)) = 4.
• For any field F , we have u(F ((t1))((t2)) . . . ((tn))) = 2nu(F ). In particular,
u(C((t1))((t2)) . . . ((tn))) = 2n.

• If F = C(t1, . . . , tn) denotes the field of rational functions in n variables
over C, then u(F ) = 2n.

Note that in all examples listed above the value of the u-invariant is always
a power of 2 or infinite. This observation was probably a reason for the well-
known conjecture of Kaplansky (1953) that only powers of 2 are possible for
finite values of the u-invariant. It is known that Kaplansky’s conjecture is true
for finitely generated fields over algebraically closed or finite fields (see [Kah3]).
More precisely, if F is such a field, then it is proved that u(F ) = 2cd(F ), where
cd(F ) is the cohomological dimension of F . The problem concerning the u-
invariant of finitely generated fields of transcendence degree 6= 0 over number
or local fields seems to be very difficult. For example, the finiteness of the
u-invariant is known only in the case when F is of transcendence degree 1
over a local nondyadic field (1998, [HvG] and [PS]). In a series of papers, R.
Elam and T. Y. Lam studied the u-invariant for fields satisfying some additional
hypotheses ([Elm, EL1, EL2]). In particular, Kaplansky’s conjecture was proved
for all linked fields.

In ([M2], 1989), A.Merkurev disproved this conjecture by constructing a field
F with u(F ) = 6 (see also [Lam2]). Later, he proved that the u-invariant of a
field can be any even number ([M3], 1991). It should be noted that the basic
idea of his proof (index reduction formula) cannot be used to construct a field
with odd u-invariant. It was still an open problem whether the u-invariant can
take odd values other than 1. However, it is known that the u-invariant never
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equals 3, 5, or 7 (see e.g., [Lam1, Prop. 4.8]). The principal result of this paper
is the following

Theorem 0.1. There exists a field F with u(F ) = 9.

In fact, we prove a more precise result. To formulate it, we introduce the
following notion:

Definition 0.2. We say that φ is an essential 9-dimensional form if the follow-
ing conditions hold:

• φ is an anisotropic 9-dimensional form;
• φ is not a Pfister neighbor;
• indC0(φ) ≥ 4.

The role of this notion is illuminated by the following version of Theorem 0.1.

Theorem 0.3. Let φ be a 9-dimensional quadratic form over a field F . Then
the following conditions are equivalent:

(1) there exists a field extension E/F such that u(E) = 9 and the form φE is
anisotropic,

(2) φ is an essential form.

Moreover, if these conditions hold, we can construct a field E with the following
additional properties:

• all anisotropic 9-dimensional forms over E are similar to φE.
• E has no nontrivial odd extensions and cd2(E) = 3.

The basic tool for the proof of Theorem 0.1 is the following

Proposition 0.4. (cf. Theorem 7.3). Let φ be an essential 9-dimensional
quadratic form and ψ be a form of dimension ≥ 10. Then φF (ψ) is an essential
form.

Using this proposition we can construct a field with u-invariant 9 (cf. [M3,
§3] and/or [M2]). Indeed, we start with an arbitrary field k0 and consider the
form φ = 〈t1, . . . , t9〉 over the rational function field k = k0(t1, . . . , t9). It is easy
to show that the k-form φ is essential. By iterated passages to function fields of
10-dimensional quadratic forms, one can obtain a field F with no anisotropic 10-
dimensional quadratic forms. By Proposition 0.4, the form φF is still essential.
In particular, φF is an anisotropic 9-dimensional form. Hence, u(F ) = 9.

Our proof of Proposition 0.4 (and Theorem 0.3) uses the following recent
results of B. Kahn, M. Rost, R. Sujatha, and N. Karpenko:

• the results of B. Kahn, M. Rost, and R. Sujatha, concerning the unramified
cohomology of quadrics [KRS1].

• a new result of N. Karpenko related to isotropy of 9-dimensional essential
forms over the function fields of 9-dimensional forms (see Theorem 1.13).

An essential part of the proof of Proposition 0.4 is based on the compu-
tation of the third Chow group and the fourth unramified cohomology group
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of quadrics. We compute these groups completely for all quadrics of dimen-
sion ≥ 7 (i. e., in the case where the corresponding quadratic forms are of
dimension ≥ 9).

Theorem 0.5. Let φ be an F -form of dimension ≥ 9. Let X = Xφ be the
projective quadric corresponding to the form φ. Then Tors CH3(X) = 0, with
the following exceptions, where Tors CH3(X) ' Z/2Z :

(9-a) φ = π ⊥ 〈d〉, where π is similar to an anisotropic 3-fold Pfister form (in
this case, indC0(φ) = 1).

(9-b) φ is an anisotropic 9-dimensional form with the following properties:
indC0(φ) = 2, detφ /∈ DF (φ), and φ contains no 7-dimensional Pfister
neighbors.

(10-a) φ = π ⊥ H, where π is similar to an anisotropic 3-fold Pfister form (in
this case, φ ∈ I2(F ) and indC(φ) = 1).

(10-b) φ is an anisotropic 10-dimensional form such that φ ∈ I 2(F ) and
indC(φ) = 2.

(10-c) φ is an anisotropic 10-dimensional form with nontrivial discriminant
d = d±φ /∈ F ∗2 which is similar to a subform of an anisotropic 12-
dimensional form τ ∈ I3(F ) and such that φF (

√
d) is not hyperbolic (in

this case, indC0(φ) = 1).
(11-a) φ is an anisotropic 11-dimensional form with indC0(φ) = 1.
(12-a) φ is an anisotropic 12-dimensional form belonging to I 3(F ) (in particular,

indC(φ) = 1).

Remarks. 1) The statement that the group Tors CH3(X) is either zero or iso-
morphic to Z/2Z is due to N. Karpenko. He also proved that this group is
trivial for all forms of dimension > 12 ([Kar2]).

2) In many cases the triviality of the group Tors CH2(Xφ) was proved by
B. Kahn and R. Sujatha in [KS3].

3) Theorem 0.5 together with the results of N. Karpenko [Kar1] complete the
computation of the group CH3(Xφ) for all forms except for the case when φ is
an 8-dimensional form with nontrivial discriminant.

Theorem 0.5 is closely related to the computation of the fourth unramified
cohomology of quadrics. Let Hn(F ) be the Galois cohomology group of F with
Z/2Z-coeficients. For a form φ, we denote by H̃4

nr(F (φ)/F ) the homology group
of the complex

H4(F ) → H4(F (Xφ)) → ⊕
x∈X(1)

φ
H3(F (x)),

where Xφ is the projective quadric corresponding to φ. This group was studied
in detail in [KRS1, KS2, KS3]. Among many other results, it was proved that
if φ has dimension ≥ 9 and φ is not a 4-fold neighbor, then there exists an
injective homomorphism ε : H̃4

nr(F (φ)/F ) → Tors CH3(Xφ) (see [KRS1, Th.
6(1) and Prop.3]). The construction of this homomorphism fundamentally uses
mixing the Hochschild-Serre and Bloch-Ogus spectral sequences. Another tool,
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originally due to Bloch, is an exact sequence that relates H-cohomology and
K-cohomology (cf. [CT2, 3.6]). It is a very important question to ask when the
homomorphism ε is an isomorphism.

Theorem 0.6. Let φ be an anisotropic form of dimension ≥ 9 that is not
a 4-fold Pfister neighbor. Then the homomorphism ε : H̃4

nr(F (φ)/F ) →
Tors CH3(Xφ) is an isomorphism.

Remarks. 1) Under the hypothesis of the theorem, B. Kahn and R. Sujatha
proved that the homomorphism ε : H̃4

nr(F (φ)/F,Q/Z(3)) → Tors CH3(Xφ) is
an isomorphism ([KS3, Th. 1(b)]). Moreover, they proved Theorem 0.6 for
fields containing all 2-primary roots of unity (see Corollary 1 in [KS3]).

2) Theorem 0.6 together with Theorem 0.5, complete the computation of the

groups H̃4
nr(F (φ)/F ) for all forms φ of dimension ≥ 9. Here we note that in the

case of 4-fold neighbors (which is excluded from the formulation of Theorem 0.6)
the group H̃4

nr(F (φ)/F ) was computed in [KRS1, Cor. 8(3)].

The following easy corollary of Theorem 0.6 gives a partial answer to the
question stated at the beginning of Subsection 1.1 of [KS2].

Corollary 0.7. (cf. [KS2, Theorem 1]). Let φ be a form of dimension ≥
9. Then the natural homomorphism H̃4

nr(F (φ)/F ) → H̃4
nr(F (φ)/F,Q/Z(3)) is

surjective.

In this paper we also prove the following conjectures.

Conjecture 0.8. ([Kah1, p.154]). Let φ ∈ I3(F ) be an anisotropic form of
dimension 12. Let ψ be a form of dimension > 12. Then φF (ψ) is anisotropic.

Conjecture 0.9. ([Lag, Conj. 3]). Let φ ∈ I2(F ) be an anisotropic form of
dimension 10 with indC(φ) = 2. Let ψ be a form of dimension > 10. Then
φF (ψ) is anisotropic.

Conjecture 0.10. ([Izh1, Conj. 2.1]). Let φ be a 10-dimensional anisotropic
form. Then φ has maximal splitting if and only if at least one of the following
conditions holds:

• φ is a Pfister neighbor,
• φ ' 〈〈a〉〉 ⊗ τ with dim τ = 5.

The proofs of all results mentioned above depend only on published papers or
papers accepted for publication. However, our following result depends on the
theory of Voevodsky related to the proof of Milnor’s conjecture. Using some
recent results announced by Alexander Vishik [Vi3, Vi4], we prove the following
conjecture of Bruno Kahn in the case when n = 3 and charF = 0:

Conjecture 0.11. ([Kah2, Conj. 7]). Let φ be a nongood form of height 2 and
degree n. Then φ is of the form τ ⊗ q, where τ is an (n − 2)-fold Pfister form
and q is an Albert form.
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1. Quadratic forms

This section contains some preliminary results concerning quadratic forms.
The basic notations are the same as in the books of T. Y. Lam and W. Schar-
lau ([Lam1], [Sch]). We recall some of them and introduce several additional
notations.

Let φ be a quadratic form over F . We denote the Witt index of φ by iW (φ).
The anisotropic part of φ is denoted by φan. We say that φ is Witt equivalent
to ψ if φan is isometric to ψan. We call two forms φ and ψ stably birationally
equivalent if the corresponding quadrics Xφ and Xψ are stably birationally
equivalent. It is well known that the forms φ and ψ are stably birationally
equivalent if and only if φF (ψ) and ψF (φ) are both isotropic (see, e.g., [Ohm,
Sect. 3]). In this paper we deal with the following four equivalence relations on
the set of quadratic forms:
φ ' ψ - isometry of the forms φ and ψ,
φ ∼ ψ - similarity of the forms φ and ψ (i.e., φ ' kψ for a suitable

k ∈ F ∗),

φ
st∼ ψ - stable rational equivalence of the forms φ and ψ,

φ = ψ - Witt equivalence of the forms φ and ψ.
The Clifford algebra (resp., the even part of the Clifford algebra) of φ will be

denoted by C(φ) (resp., C0(φ)). We recall that if φ ∈ I2(F ), then C0(φ) is a
semisimple algebra of the form A × A, where A is a central simple F -algebra.
Moreover, in this case we have C(φ) = M2(A).

For any form φ, we define F -algebra C ′
0(φ) as follows:

• if dim φ is odd, then C ′
0(φ) = C0(φ). In this case, C ′

0(φ) is a central simple
F -algebra.

• if dimφ is even and d = d±φ /∈ F ∗2, then C ′
0(φ) = C0(φ). In this case,

C ′
0(φ) is a central simple L-algebra, where L/F is the discriminant exten-

sion (i.e., L = F (
√
d)).

• if dimφ is even and d = d±φ ∈ F ∗2, then C ′
0(φ) = A, where A is a central

simple F -algebra such that C0(A) = A× A.

By definition, C ′
0(φ) is a simple algebra of degree 2[(dimφ−1)/2]. By Wedderburn’s

theorem, there exists a division algebra D and an integer s ≥ 0 such that
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C ′
0(φ) = M2s(D). We define Schur invariants indφ and iS(φ) as follows 1:

indφ = indC ′
0(φ) = degD, iS(φ) = s

We say that indφ is the Schur index of φ. The integer iS(φ) will be called
the Schur splitting index of φ. Many properties of the Schur splitting index
iS(φ) are the same as the properties of the Witt index iW (φ). For example,
iS(φ ⊥ mH) = iS(φ) +m and iS(kφ) = iS(φ). Moreover, iS(φ) ≥ iW (φ).

The following lemma is trivial

Lemma 1.1. Let φ be a form over F .

• if dimφ = 2n+ 1, then degC ′
0(φ) = 2iS(φ) · indφ = 2n,

• if dimφ = 2n, then degC ′
0(φ) = 2iS(φ) · indφ = 2n−1.

The following statement is well known:

Lemma 1.2. Let E/F be either an odd extension or a unirational extension
(i.e., a subfield of a purely transcendental extension). Then for any F -form φ,
we have

iW (φE) = iW (φ), dim(φE)an = dimφan,

iS(φE) = iS(φ), ind(φE) = ind(φ).

In particular, the homomorphism W (F ) → E(E) is injective. Moreover, the
homomorphism W (F )/In(F ) →W (E)/In(E) is injective for all n.

Theorem 1.3 ([Ti]). Let F be a field and F (t) be the field of rational functions
in one variable over F .

• if A is a simple algebra over F , then indAF (t) = indA,
• if A is a central simple algebra over F of exponent 2, and d is an element

of F ∗ such that d /∈ F ∗2, then ind(AF (t) ⊗ (d, t)) = 2 indAF (
√
d).

Corollary 1.4. Let F be a field and F (t) be the field of rational functions in

one variable over F . Let φ be a quadratic form over F , and let φ̃ = φF (t) ⊥ 〈kt〉
with k ∈ F ∗.

• if dimφ is odd or φ ∈ I2(F ), then ind φ̃ = indφ,

• if dimφ is even and φ /∈ I2(F ), then ind φ̃ = 2 indφ.

Sketch of the proof. Using the formulas for Clifford algebras given in [Lam1],

one can compute C0(φ̃) in terms of C(φ) or C0(φ). After this, the required
result follows easily from Tignol’s Theorem 1.3.

The following lemma is a trivial consequence of Merkurev’s index reduction
formula ([M3]).

Lemma 1.5. Let φ and ψ be forms over F .

• If ψ ∈ I3(F ), then indφF (ψ) = indφ.
• If indφ ≤ 8 and dimψ ≥ 9, then indφF (ψ) = indφ.
• If indφ ≥ 4 and dimψ ≥ 9, then indφF (ψ) ≥ 4.

1In [H2] the author used the notation iS(φ) for the index of c(φ) ∈ Br(F ).
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We recall Cassels–Pfister subform theorem (which will be used in the sequel
without any reference).

Theorem 1.6. [Sch, Ch.4, Th. 5.4(ii)] Let φ be a nonhyperbolic form, and let
ψ be a form such that φF (ψ) is hyperbolic. Then for any k ∈ DF (φ) ·DF (ψ), we
have kψ ⊂ φ. In particular, dimψ ≤ dimφ.

In what follows, we use the following very specific consequence of this theo-
rem.

Corollary 1.7. Let ψ be a form over F , and let d be an element of F such
that d /∈ F ∗2. Let K be

• either an odd extension of F ,
• or a unirational extension of F ,
• or K = F (ψ), where ψ is a form with dimψ > dimφ.

Then the form φK(
√
d) is hyperbolic if and only if the form φF (

√
d) is hyperbolic.

Proof. If K/F is odd or unirational, then the extension K(
√
d)/F (

√
d) is also

odd or unirational. In these cases, the result follows immediately from Lemma
1.2. Now, we assume that K = F (ψ) with dimψ > dimφ. Let L = F (

√
d).

By Theorem 1.6, the form φK(
√
d) ' φL(ψ) is hyperbolic if and only if the form

φF (
√
d) ' φL is hyperbolic.

The following theorem we will call Pfister’s theorem on 10-dimensional forms
in I3 (or simply Pfister’s theorem).

Theorem 1.8. (see [Pf2, Satz 14 and Zautsats], also [Sch, Ch.2, Th.14.4] or
[H3, Th. 2.9]). Let φ ∈ I3(F ) and dim φ = 10. Then φ is isotropic and can be
written in the form φ ' π ⊥ H for some π ∈ GP3(F ).

Corollary 1.9. Let φ ∈ I3(F ). We have

(a) if dimφan < 12, then there exists π ∈ GP3(F ) such that φ and π are Witt
equivalent,

(b) if dimφ = 12, then iW (φF (φ)) ≥ 2,
(c) if dimφ = 12 and φ is nonhyperbolic, then (φF (φ))an ∈ GP3(F (φ)).

The following theorems concern the so-called forms with maximal splitting.

Theorem 1.10 ([H1, Kah1, H2, Izh1]). Let φ be an anisotropic form of di-
mension 2n +m, where 0 < m ≤ 2n. Then

• 1 ≤ i1(φ) ≤ m (in the case where i1(φ) = m, we say that φ has maximal
splitting),

• if φ is a Pfister neighbor, then i1(φ) = m (i.e., φ has maximal splitting),
• if n ≥ 3, m ≥ 2n−5, and φ has maximal splitting, then φ is an (n+1)-fold

Pfister neighbor,
• if n ≥ 3, m = 2n − 6, φ ∈ I2(F ), and φ has maximal splitting, then φ is

an (n+ 1)-fold Pfister neighbor.
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The first two statements of this theorem (as well as the notion of forms with
maximal splitting) are due to Detlev Hoffmann [H1]. The proofs of the third
and fourth statements follow easily from the results of Bruno Kahn [Kah1,
Remark after Th.4]. Besides, an elementary proof of the third statement can
be found in [Izh1], and an elementary proof of the fourth statement is given in
[H2] and [Izh1].

Theorem 1.11 ([H1, Izh4]). Let φ be an anisotropic form with 2n < dimφ ≤
2n+1. Suppose that φ has maximal splitting (e.g., dimφ = 2n + 1). Let ψ be a
form of dimension ≥ 2n + 1 such that φF (ψ) is isotropic. Then

• ψ has maximal splitting and 2n < dimψ ≤ 2n+1,

• ψF (φ) is isotropic (and hence φ
st∼ ψ),

• if ψ is a Pfister neighbor, then φ is also a Pfister neighbor.

The first and third statements of this theorem are due to D. Hoffmann [H1].
The second statement is proved in [Izh4]. Setting n = 3 in Theorems 1.10 and
1.11, we get the following corollary.

Corollary 1.12. Let φ be a form 9 ≤ dimφ ≤ 16. Suppose that φ has maximal
splitting (e.g., dimφ = 9), and φ is not a Pfister neighbor. Let ψ be a form of
dimension ≥ 9 such that φF (ψ) is isotropic. Then

• 9 ≤ dimφ, dimψ ≤ 10,
• ψ is not a Pfister neighbor and ψ /∈ I2(F ),

• ψ st∼ φ.

The following result concerning the isotropy of 9-dimensional forms over func-
tion fields of quadrics has recently been proved by Nikita Karpenko.

Theorem 1.13. (N. Karpenko [Kar3]). Let φ be a 9-dimensional essential
form (see Definition 0.2). Let ψ be a form of dimension 9 such that φF (ψ) is
isotropic. Then ψ is similar to φ.

It should be pointed out that Theorem 1.13 plays a key role in the proof of
our main Theorem 0.1. We also need the following statement from Karpenko’s
paper [Kar3].

Lemma 1.14. Let φ be a 9-dimensional form which is not a Pfister neighbor.
Then φL is not a Pfister neighbor for all odd extensions L/F .

The following theorem was proved by A. Vishik by using calculations in
Voevodsky’s motivic category [Vi2]. In [Kar4], N. Karpenko simplified Vishik’s
proofs by using arguments in the framework of the classical category of Gro-
thendieck Chow-motives and presented the current formulation of the theorem:

Theorem 1.15. Let φ and ψ be anisotropic forms such that φ
st∼ ψ. Then

dim φ− i1(φ) = dimψ − i1(ψ).

The rest of this section contains several lemmas concerning quadratic forms.
These results will be used in other sections.
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Lemma 1.16. Let F be a field which has no nontrivial odd extensions. Let φ
be an F -form with indφ ≥ 2s. Then there exists a finite field extension E/F
such that

• indφE = 2s,
• if dimφ is even, then φE ∈ I2(E),
• the homomorphism NE/F : K(C0(φE)) → K(C0(φ)) is surjective. 2

Proof. Let D be the simple division algebra corresponding to the algebra C ′
0(φ).

Let L be the center of D (in the cases when dim φ is odd or φ ∈ I2(F ) we
obviously have L = F ). Let M/L be a maximal subfield of D. Clearly, [M :
L] = 2r with r = indφ. By our assumption, [M : L] = 2r ≥ 2s. Since F has no
odd extensions, Galois theory shows that there exists a tower of fields

M = M0 ⊃M1 ⊃ · · · ⊃Mr = L

such that [Mi : Mi+1] = 2 for all i. Setting E = Ms, we get the field with the
required properties.

Lemma 1.17. Let L/F be a field extension, A be a central simple F -algebra of
exponent 2, and m be an integer. Suppose that one of the following conditions
holds:

(i) [L : F ] ≤ 2, indAL = 1, and m = 2;
(ii) L = F , indA ≤ 2, and m = 3;
(iii) [L : F ] ≤ 2, indAL ≤ 2, and m = 4;
(iv) L = F , indA ≤ 4, and m = 5.

Then there exists an m-dimensional form µ over F such that the algebra C ′
0(µ)

is Brauer equivalent to AL.

Proof. (i) If L = F , we set µ = H, if L = F (
√
d), we set µ = 〈〈d〉〉.

(ii) Since indA ≤ 2, it follows that A is Brauer equivalent to a quaternion
algebra (a, b). Now, it suffices to set µ = 〈1,−a,−b〉.

(iii) If L = F , then AL = A is Brauer equivalent to a biquaternion algebra
(a, b). In this case we set µ = 〈〈a, b〉〉. If [L : F ] = 2, the condition indAL ≤ 2
implies that indA ≤ 4. Therefore A is Brauer equivalent to a biquaternion
algebra. Let q be an Albert form corresponding to A. Since indAL ≤ 2, the
form qL is isotropic. Hence q can be written in the form q ' c 〈〈d〉〉 ⊥ q0, where

d is such that L = F (
√
d). Now, it suffices to set µ = q0.

(iv) Let q be an Albert form corresponding to A. We define µ as an arbitrary
5-dimensional subform of q.

Lemma 1.18. Let φ and ψ be F -forms such that dim φ ≡ dimψ (mod 2Z)
and C ′

0(φ) is Brauer equivalent to C ′
0(ψ). Then there exists k ∈ F ∗ such that

φ ≡ kψ (mod I3(F )).

Proof. If dimφ and dimψ are odd, it suffices to set k = d±φ/d±ψ. Then
γ = φ ⊥ −kψ ∈ I2(F ) and c(γ) = c(φ) + c(ψ) = 0. Therefore, γ ∈ I3(F ). In

2Here K(A) denotes the Grothendieck group of the ring A.
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the case when dimφ and dimψ are even, the lemma is proved in [Izh2, Lemma
4.3]

Lemma 1.19. Let φ be a form satisfying one of the following conditions:

(i) dim φ = 2n, and indφ = 1,
(ii) dim φ = 2n− 1 and indφ ≤ 2,
(iii) dim φ = 2n− 2 and indφ ≤ 2,
(iv) dim φ = 2n− 3 and indφ ≤ 4.

Then there exists a (2n + 1)-dimensional form φ̃ and a (2n + 2)-dimensional

form γ ∈ I3(F ) such that φ ⊂ φ̃ ⊂ γ and ind φ̃ = 1.

Proof. Let m = 2n+2−dimφ. By Lemma 1.17, there exists an m-dimensional
form µ such that C ′

0(φ) is Brauer equivalent to C ′
0(µ). Then there exists k ∈ F ∗

such that φ ≡ kµ (mod I3(F )) (Lemma 1.18). We set γ = φ ⊥ −kµ. Now it

suffices to set φ̃ = φ ⊥ −kµ0, where µ0 is a subform of µ of codimension 1.

Lemma 1.20. (cf. [H1, Lemma 3]). Let ψ be a form over F , and let φ ⊂ ψ.

If dimφ ≥ dimψ − iW (ψF (ψ)) + 1, then φ
st∼ ψ.

Proof. It suffices to verify that φF (ψ) is isotropic, but this is an obvious conse-
quence of [H1, Lemma 3].

Lemma 1.21. (1) Let γ be a 12-dimensional form from I 3(F ), and let ψ be an

11-dimensional subform of γ. Then ψ
st∼ γ.

(2). Let ψ be an 11-dimensional form with indψ = 1. Then there exists a

12-dimensional form γ ∈ I 3(F ) such that ψ
st∼ γ.

Proof. (1). Obvious in view of Lemma 1.20 and Corollary 1.9.
(2). We set γ = ψ ⊥ 〈detψ〉. Clearly γ ∈ I2(F ) and ind γ = indψ = 1.

Hence, γ ∈ I3(F ). Item (1) shows that ψ
st∼ γ.

Lemma 1.22. (see, e.g., [Izh4, Lemma 2.11]). Let µ and ν be F -forms of

dimension ≥ 1, and let φ = µ ⊥ −tν be a form over F̃ = F (t). Then the
extension F̃ (φ)/F is purely transcendental.

Lemma 1.23. Let φ be an F -form and E/F be a unirational field extension.
Then the form φE is a Pfister neighbor if and only if the form φ is a Pfister
neighbor.

Proof. It suffices to consider the case where E/F is purely transcendental. In
this case lemma is proved in [H1, Prop.7].

Lemma 1.24. Let φ be a 9-dimensional essential form over F (see Definition
0.2). Let E/F be either an odd extension or a unirational extension. Then φE
is an essential form.

Proof. By Springer’s theorems, φE is anisotropic. By Lemma 1.2, indφE =
indφ ≥ 4. By Lemmas 1.14 and 1.23, φE is not a Pfister neighbor.
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At the end of this section, we prove the implication (1)⇒(2) in Theorem 0.3
(this is the simplest part of the theorem).

Proof. Let E be as in Item (1) of Theorem 0.3. We must prove that φE is
essential. By our assumption, φE is anisotropic. Since u(E) = 9, it follows that
all 4-fold Pfister forms over E are isotropic. Hence all 4-fold Pfister neighbors
are also isotropic. Hence, φE is not a 4-fold Pfister neighbor. Now, it suffices
to verify that indφE ≥ 4. Since all 10-dimensional forms over E are isotropic,
it follows that all 9-dimensional E-form are universal (i.e., DE(φ) = E∗). In
particular, d = detφ ∈ DE(φ). Hence, φE can be written in the form φE =
τ ⊥ 〈d〉, where τ is an 8-dimensional form over E with trivial discriminant.
Since ind τ = indφE , it suffices to prove that ind τ ≥ 4. Assume the converse,
ind τ ≤ 2. Then there exists a quaternion E-algebra (a, b) such that c(τ) =
(a, b). We have τ ≡ 〈〈a, b〉〉 (mod I3(F )). Let γ = dτ ⊥ 〈〈a, b〉〉. Since dim γ =
12 > 9 = u(E), the form γ is isotropic. Therefore, the forms (−d)τ and 〈〈a, b〉〉
have a nontrivial common value. Let k ∈ E∗ be such that k ∈ DE(−dτ) and
k ∈ DE(〈〈a, b〉〉). Set π = 〈〈k〉〉 ⊗ τ = τ ⊥ −kτ . Since k ∈ DE(−dτ), it follows
that that d ∈ DE(−kτ), and hence φE = τ ⊥ 〈d〉 ⊂ τ ⊥ −kτ = π.

Since k ∈ DE(〈〈a, b〉〉), it follows that 〈〈a, b, k〉〉 = 0. Therefore π = 〈〈k〉〉⊗ τ ≡
〈〈k〉〉 ⊗ 〈〈a, b〉〉 = 0 (mod I 4(F )). Since dim π = 16, we have π ∈ GP4(E). Since
φE ⊂ π, we see that φE is a Pfister neighbor. However, we have proved earlier
that φE is not a Pfister neighbor, a contradiction.

2. Graded Grothendieck groups of quadrics

For a smooth variety X we will denote by K(X) the Grothendieck ring of X.
This ring is supplied with the “topological” filtration K(X)(i) (which respects
multiplication). The factor group K(X)(i)/K(X)(i+1) is denoted by GiK(X).
Thus, we get the adjoint graded ring G∗K(X) = ⊕iG

iK(X). There exists
a canonical surjective homomorphism of the graded Chow ring CH∗(X) onto
G∗K(X).

Now, let X = Xφ be the projective quadric corresponding to the n-
dimensional form φ. We consider X as a subvariety of codimension 1 in
Pn−1 (in particular, dimXφ = n − 2). The embedding Xφ ⊂ Pn−1 determines
the local free sheaf OX(−1) on X. The group K(X)(1) contains the element
h := 1 − [OX(−1)]. By h̄, we denote the class of the element h in the group
G1K(X). It is well known that h̄ ∈ G1K(X) corresponds the “hyperplane”
class in CH1(X) via the natural isomorphism CH1(X) ' G1K(X). For all
i = 0, . . . , dimX = dimφ − 2 the homomorphism Z → GiK(X), 1 → h̄i is
injective. The image of this homomorphism will be denoted by h̄iZ.

Let us recall some basic properties of the group K(Xφ) (see [Kar1]). Let s =
iS(φ) (i.e., C ′

0(φ) has the form M2s(D), where D is a division algebra). Clearly,
s ≤ 1

2
dimX. If s = 0, then the group K(X) is generated (as a free Abelian

group) by the elements hi, where i = 0, . . . , dimX. If s > 0, the group K(X)
contains elements l0, . . . , ls−1 such that 2i+1li = hd+2hd−1 + · · ·+2ihd−i, where
d = dimX. Since the group K(Xφ) is torsion free, the elements l0, . . . , ls−1
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are uniquely defined. There exists a convenient geometric characterization of
the elements li. Namely, li coincides with the “class of an i-dimensional line”.
More formally, this means that the image of the element li under the push-
forward homomorphism K(X) → K(Pn−1) coincides with the image of the unit
1 = [OPi] under the push-forward homomorphism K(Pi) → K(Pn−1) induced
by the natural embedding Pi ⊂ Pn−1.

Theorem 2.1. (N. Karpenko, [Kar1, Th. 3.8 and 3.10] 3 ). Let φ be a quadratic
form over F . Let X be the quadric corresponding to φ. Let i be an arbitrary
integer such that 0 ≤ i < dimX = dimφ− 2.

(1) if i < 1
2
dimX = 1

2
dim φ− 1, then GiK(X) = TorsGiK(X)⊕ h̄iZ,

(2) if φ /∈ I2(F ) and liS(φ)−1 ∈ K(X)(i+1), then

TorsG0K(X) = · · · = TorsGiK(X) = 0.

(3) if i < 1
2
dimφ − 1 and TorsG0K(X) = · · · = TorsGiK(X) = 0, then

liS(φ)−1 ∈ K(X)(i+1).

Lemma 2.2. Let φ ⊂ φ̃ be quadratic forms such that φ, φ̃ /∈ I2(F ). Let m =

dim φ̃− dimφ. Let p be an integer such that 0 ≤ p < 1
2
dimφ− 1.

(1) if iS(φ̃) = iS(φ) and TorsGiK(Xφ) = 0 for all i ≤ p, then TorsGiK(Xφ̃) =
0 for all i ≤ p+m.

(2) if iS(φ̃) = iS(φ) + m and TorsGiK(Xφ̃) = 0 for all i ≤ p, then

TorsGiK(Xφ) = 0 for all i ≤ p.

Proof. Let s = iS(φ) and s̃ = iS(φ̃).
(1) Theorem 2.1(3) shows that ls−1 ∈ K(Xφ)

(p+1). Let us consider the push-
forward homomorphismK(Xφ) → K(Xφ̃). This homomorphism mapsK(Xφ)

(i)

to K(Xφ̃)
(i+m) for all i, and maps lj to lj for all j ≤ s − 1. Taking the image

of ls−1 under this homomorphism, we get ls−1 ∈ K(Xφ̃)
(p+1+m). Since s̃ = s,

Theorem 2.1(2) shows that TorsGiK(Xφ̃) = 0 for all i ≤ p+m.

(2) Theorem 2.1(3) shows that ls̃−1 ∈ K(Xφ̃)
(p+1). Let us consider the pull-

back homomorphism K(Xφ̃) → K(Xφ). This homomorphism maps K(Xφ̃)
(i)

to K(Xφ)
(i) for all i, and maps lj to lj−m for all j = m, . . . , s̃− 1. Taking the

image of ls̃−1 under this homomorphism, we get ls̃−1−m ∈ K(Xφ)
(p+1). Since

s̃−m = s, Theorem 2.1(2) shows that TorsGiK(Xφ) = 0 for all i ≤ p.

Corollary 2.3. Let φ ⊂ φ̃ be odd-dimensional forms. Let k be an integer such
that dim φ̃ = dimφ + 2k and ind φ̃ = 1

2k ind φ. Let p be an integer such that

0 ≤ p < 1
2
dimφ− 1. Suppose also that TorsGiK(Xφ̃) = 0 for all i ≤ p. Then

TorsGiK(Xφ) = 0 for all i ≤ p.

3Actually, Theorems 3.8 and 3.10 from [Kar1] are proved only for anisotropic quadrics.
However, the proof of three statements included in the formulation of Theorem 2.1 does not
use anything specific from the anisotropic case.



14 O. T. IZHBOLDIN

Proof. By Lemma 2.2(2), it suffices to prove that iS(φ̃) = iS(φ)+ 2k. Applying

Lemma 1.1, we get 2(dim φ̃−dimφ)/2 = 2iS(φ̃)−iS(φ) · ind φ̃/ indφ. Since dim φ̃ −
dim φ = 2k, and 2k ind φ̃ = indφ, we have iS(φ̃)− iS(φ) = 2k.

Corollary 2.4. Let φ be an even-dimensional form with nontrivial discrimi-
nant and φ̃ be an odd-dimensional form such that φ ⊂ φ̃. Let k be an integer
such that dim φ̃ = dimφ + (2k + 1) and ind φ̃ = 1

2k indφ. Let p be an integer

such that 0 ≤ p < 1
2
dimφ − 1. Suppose that TorsGiK(Xφ̃) = 0 for all i ≤ p.

Then TorsGiK(Xφ) = 0 for all i ≤ p.

Proof. By Lemma 2.2(2), it suffices to prove that iS(φ̃) = iS(φ) + 2k + 1. Let

dim φ = 2n and dim φ̃ = 2ñ + 1. Since dim φ̃ − dim φ = 2k + 1, we have

ñ − n = k. Applying Lemma 1.1, we get 2ñ−(n−1) = 2iS(φ̃)−iS(φ) · ind φ̃/ indφ.

Since ñ− n = k and 2k ind φ̃ = indφ, we have iS(φ̃)− iS(φ) = 2k + 1.

Corollary 2.5. Let φ = φ0 ⊥ 〈a〉 be an even-dimensional form with nontrivial
discriminant such that that ind φ = indφ0. Let p be an integer such that 1 ≤
p < 1

2
dimφ − 1. Suppose that TorsGiK(Xφ0) = 0 for i ≤ p − 1. Then

TorsGiK(Xφ) = 0 for i ≤ p.

Proof. Since indφ = indφ0, we have iS(φ) = iS(φ0). Clearly, 0 ≤ p − 1 <
1
2
dimφ0 − 1. Now, Lemma 2.2(1) completes the proof.

Proposition 2.6 (Karpenko). Let φ be an arbitrary quadratic form over F ,
and let E/F be a finite extension such that the norm map

NE/F : K(C0(φE)) → K(C0(φ))

is surjective (e.g., E is a subfield of the division algebra corresponding to the
simple algebra C ′

0(φ)). Let p ≥ 0 be such that GiK(XφE
) = h̄iZ for all i < p.

Then

• GiK(Xφ) = h̄iZ for all i < p,
• the norm map NE/F : GpK(C0(φE))/h̄pEZ → GpK(C0(φ))/h̄pZ is surjec-

tive.

Proof. The first statement coincides with Corollary 4.9 in [Kar2]. The proof of
the second statement is the same as that of Corollary 4.9 in [Kar2].

Corollary 2.7. Let m, s, and p be integers such that p < m/2 − 1. Suppose
that for any field F and any F -form ρ satisfying the following conditions:

• ρ has dimension m,
• ind ρ = s,
• if m is even, then ρ ∈ I2(F ),

we necessarily have TorsGiK(Xρ) = 0 for all i ≤ p.
Then for any field F and any F -form φ satisfying two conditions:

• φ has dimension m,
• indφ ≥ s,

we necessarily have TorsGiK(Xφ) = 0 for all i ≤ p.
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Proof. Standard transfer arguments reduce the general case to the case where
F has no nontrivial odd extensions. Let E/F be the extension constructed in
Lemma 1.16. Applying Theorem 2.1(1) to the form φE, we have GiK(XφE

) =
TorsGiK(XφE

)⊕ h̄iZ for all i ≤ p. Applying the hypothesis of the corollary to
the form ρ = φE , we have TorsGiK(XφE

) = 0 for i ≤ p. Hence, GiK(XφE
) =

h̄iZ for all i ≤ p. By Proposition 2.6, we have GiK(Xφ) = h̄iZ for all i ≤ p.
Therefore, TorsGiK(Xφ) = 0 for i ≤ p.

Proposition 2.8. Let n ≥ 3 and p ≥ 0 be integers satisfying the following
condition: for any (2n + 1)-dimensional form τ over an arbitrary field F , the
group TorsGiK(Xτ ) is zero for all i ≤ p.

Now, let φ be a form such that p < 1
2
dim φ− 1. Suppose also that φ satisfies

one of the following conditions:

(i) dim φ = 2n, d±φ /∈ F ∗2, and indφ = 1,
(ii) dim φ = 2n− 1 and indφ ≥ 2,
(iii) dim φ = 2n− 2, d±φ /∈ F ∗2, and indφ = 2,
(vi) dim φ = 2n− 3 and indφ ≥ 4.

Then TorsGiK(Xφ) is zero for all i ≤ p.

Proof. Corollary 2.7 shows that, instead of the cases (ii) and (iv), it suffices to
consider their subcases in which we have

(ii’) dim φ = 2n− 1 and indφ = 2,
(iv’) dim φ = 2n− 3 and indφ = 4.

After this, Lemma 1.19 and Corollaries 2.3 and 2.4 complete the proof.

3. Chow groups of quadrics

Our computation of the third Chow group of quadrics is based on the follow-
ing assertion.

Theorem 3.1 (Karpenko, [Kar1, Kar2]). Let φ be a quadratic form and Xφ be
the projective quadric corresponding to φ. Then

• the homomorphism CHi(Xφ) → GiK(Xφ) is an isomorphism for i ≤ 3.
• Tors CHi(Xφ) = TorsGiK(Xφ) = 0 for i ≤ 1.
• Tors CH2(Xφ) = TorsG2K(Xφ) = 0 except for the case when φ is an

anisotropic 3-fold Pfister neighbor. If φ is an anisotropic 3-fold Pfister
neighbor, then Tors CH2(Xφ) = TorsG2K(Xφ) = Z/2Z.

• Tors CH3(Xφ) is either 0 or Z/2Z. If dimφ > 12, then Tors CH3(Xφ) = 0.

We will also use the following statement concerning the Chow groups of
isotropic quadrics.

Lemma 3.2 ([Kar1]). If φ = ψ ⊥ H, then Tors CHi(Xφ) = Tors CHi−1(Xψ)
for all i. If φ splits (i.e., dimφan ≤ 1), then Tors CHi(Xφ) = 0 for all i.

Corollary 3.3. Let φ be an isotropic form. Then the group Tors CH3(Xφ) is
nonzero only in the case when

φ ' (anisotropic 3-fold neighbor) ⊥ H.
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In particular, this implies that 7 ≤ dimφ ≤ 10.

Proof. Since φ is isotropic, we can write φ in the form φ ' µ ⊥ H. By Lemma
3.2, Tors CH3(Xφ) ' Tors CH2(Xµ). Theorem 3.1 completes the proof.

Corollary 3.4. Let φ be an isotropic form of dimension ≥ 9. Then the group
Tors CH3(Xφ) is nonzero only in the following two cases:

• dim φ = 10 and φ ' π ⊥ H, where π is similar to an anisotropic 3-fold
Pfister form,

• dim φ = 9 and φ ' µ ⊥ H, where µ is an anisotropic 7-dimensional Pfister
neighbor.

Corollary 3.5. Let φ be a quadratic form of dimension ≥ 9. Then

• TorsGiK(Xφ) = Tors CHi(Xφ) = 0 for i ≤ 2,
• TorsG3K(Xφ) = Tors CH3(Xφ);
• If dimφ > 12, then TorsG3K(Xφ) = 0;

Remark 3.6. In the remaining part of this section we mostly work with
forms of dimension ≥ 9. On the other hand, we are interested in the group
Tors CHi(Xφ) only in the case when i ≤ 3. In this case, the condition
i < 1

2
dimφ − 1 obviously holds. This shows that we can use all results of

the previous section.

Now, we can prove our first result concerning the third Chow group of
quadrics.

Proposition 3.7. Let φ be a form satisfying one of the following conditions:

(i) dim φ = 12, d±φ /∈ F ∗2, and indφ = 1
(ii) dim φ = 11 and indφ ≥ 2,
(iii) dim φ = 10, d±φ /∈ F ∗2, and indφ = 2,
(vi) dim φ = 9 and ind φ ≥ 4.

Then Tors CH3(Xφ) = 0.

Proof. Let n = 6 and p = 3. By Corollary 3.5, we have TorsGiK(Xτ ) = 0 for
i ≤ p = 3 and all forms τ of dimension 13 = 2n + 1. Applying Proposition
2.8, we see that TorsG3K(Xφ) = 0 for all quadratic forms satisfying conditions
(i)–(iv). Since CH3(Xφ) ' G3K(Xφ), the proof is complete.

Lemma 3.8 (Karpenko). Let φ be an arbitrary quadratic form over F of di-
mension ≥ 9, and let E/F be a finite extension such that the norm map

NE/F : K(C0(φE)) → K(C0(φ))

is surjective (e.g., E may be any subfield of the division algebra corresponding
to C ′

0(φ)). Then the homomorphism NE/F : Tors CH3(XφE
) → Tors CH3(Xφ)

is surjective.

Proof. Theorem 2.1 shows that TorsGiK(Xφ) ' GiK(Xφ)/h̄
iZ for all i ≤ 3.

By Corollary 3.5, we have TorsGiK(Xφ) = 0 for i ≤ 2. Finally, Proposition
2.6 together with the second item of Corollary 3.5 complete the proof.
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Corollary 3.9. Let φ be an even-dimensional form of dimension > 8. Suppose
that d = d±φ /∈ F ∗2 and put L = F (

√
d). Then the norm homomorphism

NL/F : Tors CH3(XφL
) → Tors CH3(Xφ) is surjective.

Corollary 3.10. Let φ be a form of even dimension > 8. Suppose that d =
d±φ /∈ F ∗2 and φF (

√
d) is hyperbolic. Then Tors CH3(Xφ) = 0.

Proof. Let L = F (
√
d). By Lemma 3.2, we have Tors CH3(XφL

) = 0. Corollary
3.9 implies that Tors CH3(Xφ) = 0.

Lemma 3.11. Let d /∈ F ∗2 and φ be a 10-dimensional form with discriminant
d. Suppose that φ has the form φ = τ ⊥ c 〈〈d〉〉, where τ ∈ I 2(F ) (i.e., φF (

√
d) is

isotropic). Then Tors CH3(Xφ) = 0 except possibly when

indφ = ind τF (
√
d) = 1, ind τ = 2, φF (

√
d) is not hyperbolic.

Proof. Suppose that Tors CH3(Xφ) 6= 0. Let L = F (
√
d). By Lemma 3.9, we

have Tors CH3(XφL
) 6= 0. Since φL = τL ⊥ H, Corollary 3.3 implies that τL is

an anisotropic 8-dimensional Pfister neighbor. In particular, this means that
φL is not hyperbolic and indφ = ind τL = 1.

Now, it suffices to verify that ind τ = 2. Since ind τL = 1, we obviously have
ind τ ≤ 2. Assume that ind τ = 1 (i.e., τ ∈ GP3(F )). Let φ0 = τ ⊥ 〈c〉 ⊂ φ.
Clearly, indφ0 = ind τ = 1 = indφ. Since dimφ0 = 9 > 8, it follows that
TorsGiK(Xφ0) = 0 for i ≤ 2. By Corollary 2.5, we get TorsGiK(Xφ) = 0 for
i ≤ 3. Hence, Tors CH3(Xφ) = TorsG3K(Xφ) = 0. We get a contradiction to
our assumption. Hence ind τ = 2.

Lemma 3.12. Let φ be a 9-dimensional form such that indφ 6= 1. Suppose
that φ has one of the following forms:

(i) φ = γ ⊥ 〈u, v〉, where γ is a 7-dimensional Pfister neighbor,
(ii) φ = τ ⊥ 〈d〉, where τ ⊂ I2(F ).

Then Tors CH3(Xφ) = 0.

Proof. The case indφ ≥ 4 was considered in Proposition 3.7. Thus, we can
assume that indφ = 2.

(i) Since indφ = 2 and dim φ = 9, Lemma 1.1 shows that iS(φ) = 3. Since
γ is a 7-dimensional Pfister neighbor, we have ind γ = 1. By Lemma 1.1,
we get iS(γ) = 3. By Theorem 3.1, we have TorsGiK(Xγ) = 0 for i ≤ 1.
Lemma 2.2(1) shows that TorsGiK(Xφ) = 0 for i ≤ 3. Thus, Tors CH3(Xφ) =
TorsG3K(Xφ) = 0.

(ii) Since τ ∈ I2(F ) and ind τ = indφ = 2, we can write τ in the form
φ = 〈〈a〉〉 ⊗ ρ with dim ρ = 4. Let L = F (

√
a). Since φL splits, we have

Tors CHi(XφL
) = 0 for all i. By Lemma 3.8, the homomorphism NL/F :

Tors CH3(XφL
) → Tors CH3(Xφ) is surjective. Hence Tors CH3(Xφ) = 0.

Lemma 3.13. Let F be a field such that all 14-dimensional forms from I 3(F )
are isotropic. Let φ be a form over F satisfying one of the following conditions:

• dim φ = 10, φ ∈ I2(F ) and indφ = 4,
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• dim φ = 12, φ ∈ I2(F ) and indφ = 2.

Then Tors CH3(Xφ) = 0

Proof. Let us define the form τ as follows: if dim φ = 10, then τ is an Albert
form corresponding to c(φ); if dimφ = 12, then τ is the 2-fold Pfister form
corresponding to c(φ). Let k ∈ F ∗ be such that the form γ := φ ⊥ −kτ
is isotropic. By definition, we have dim γ = 16 and γ ∈ I3(F ). Since γ is
isotropic, we obtain dim γan ≤ 14. By the hypothesis of the lemma, we have
dim γan ≤ 12. Therefore φ and kτ contain a common subform of dimension 2.
Hence, there exists a quadratic extension L/F such that φL and τL are isotropic.
By Corollary 3.3, we have Tors CH3(XφL

) = 0. Since τL is isotropic, it follows
that L is a subfield of the division algebra corresponding to C ′

0(φ). Then Lemma
3.8 shows that the homomorphism NL/F : Tors CH3(XφL

) → Tors CH3(Xφ) is

surjective. Hence Tors CH3(Xφ) = 0.

4. Galois cohomology

Throughout the paper we use the notation Hn(F ) for the Galois cohomology

Hn(Gal(F sep/F ),Z/2Z)

of the field F . It is well known that H1(F ) ' F ∗/F ∗2. Thus, any element
a ∈ F ∗ determines an element of H1(F ), which is denoted by (a). The cup-
product (a1) ∪ · · · ∪ (an) ∈ Hn(F ) is denoted by (a1, . . . , an). It is well known
that there exists a well-defined map

Pn(F ) → Hn(F ), 〈〈a1, . . . , an〉〉 7→ (a1, . . . , an).

If n ≤ 4, this map yields the homomorphism ([Ara, JR, Szy]):

en : In(F )/In+1(F ) → Hn(F ).

Recently, Orlov-Vishik-Voevodsky have announced deep results concerning ex-
istence and bijectivity of en for arbitrary n, but in our paper, we need only old
(already published) results concerning en. We list these results in the following
theorem ([Ara, AEJ2, M1, MS, R1, Szy, JR]).

Theorem 4.1. Let F be a field, and π, π1, π2 ∈ Pn(F ), where n ≤ 4.

• The form π is isotropic (and hence hyperbolic) if and only if en(π) = 0.
• If en(π1) = en(π2), then π1 ' π2.
• If n ≤ 3, then the homomorphism en : In(F )/In+1(F ) → Hn(F ) is an

isomorphism.

Corollary 4.2. Let n ≤ 3, and let E/F be a field extension such that the
homomorphism H i(F ) → H i(E) is injective for i = 0, . . . , n. Then the homo-
morphism

W (F )/In+1(F ) →W (E)/In+1(E)

is injective.

Definition 4.3. Let E/F be a field extension. By Hn(E/F ) we denote the
kernel of the homomorphism Hn(F ) → Hn(E).
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The following theorem was proved by J. K. Arason in the case when n ≤ 3
and proved by B. Kahn, M. Rost, and R. Sujatha, in the case n = 4.

Theorem 4.4 ([Ara, KRS1]). Let φ be a form of dimension ≥ 9. Then

• for n ≤ 3, the homomorphism Hn(F ) → Hn(F (φ)) is injective (i.e.,
Hn(F (φ)/F ) = 0),

• if φ is not an anisotropic 4-fold Pfister neighbor, then the homomorphism
H4(F ) → H4F (φ)) is injective (i.e., H 4(F (φ)/F ) = 0).

• If φ is a Pfister neighbor of a Pfister form π = 〈〈a, b, c, d〉〉, then the group
H4(F (φ)/F ) is generated by the element e4(π) = (a, b, c, d).

Corollary 4.5. (cf. [KRS1, Cor.10]). Let φ be a form of dimension ≥ 9. Then
the homomorphism

W (F )/In(F ) → W (F (φ))/In(F (φ))

is injective for all n ≤ 4.

Proof. Obvious in view of Corollary 4.2 and Theorem 4.4.

Proposition 4.6. ([AEJ1, AEJ2]). Let F be a field satisfying two conditions:
F has no nontrivial odd extensions and I 4(F ) = 0. Then H4(F ) = 0 and
cd2(F ) ≤ 3.

Lemma 4.7. Let E/F be an arbitrary field extension and ψ be a 4-fold Pfister
neighbor over F . Then H 4(E(ψ)/F ) = H4(E/F ) +H4(F (ψ)/F ).

Proof. Clearly, H4(E(ψ)/F ) ⊃ H4(E/F ) + H4(F (ψ)/F ). It suffices to verify
that any element u ∈ H4(E(ψ)/F ) belongs to H4(E/F ) + H4(F (ψ)/F ). Let
π = 〈〈a, b, c, d〉〉 be the Pfister form associated with ψ. Since u ∈ H4(E(ψ)/F ),
we have uE ∈ H4(E(ψ)/E). By Theorem 4.4, the group H4(E(ψ)/E) is
generated by the element (a, b, c, d)E ∈ H4(E). Let m ∈ Z be such that
uE = m · (a, b, c, d)E. We have u − m · (a, b, c, d) ∈ H4(E/F ). Since
m · (a, b, c, d) ∈ H4(F (ψ)/F ), we get u ∈ H4(E/F ) +Hn(F (ψ)/F ).

Corollary 4.8. Let ψ be a 4-fold Pfister neighbor over F . Then for any form
φ, we have H4(F (φ, ψ)/F ) = H4(F (φ)/F ) +H4(F (ψ)/F ).

Proof. It suffices to set E = F (φ) in the Lemma 4.7.

Corollary 4.9. Let φ and ψ be forms of dimension ≥ 9. Suppose that φ is not
a 4-fold neighbor and ψ is a 4-fold Pfister neighbor. Then H 4(F (φ, ψ)/F ) =
H4(F (ψ)/F ).

Proof. By Theorem 4.4, the group H4(F (φ)/F ) is zero. Hence,
H4(F (φ, ψ)/F ) = H4(F (φ)/F ) +H4(F (ψ)/F ) = H4(F (ψ)/F ).

5. Unramified cohomology of quadrics

In this section we use the terminology and notation of [CT1] and [KRS1, KS2].
For a smooth variety X we define the unramified cohomologyHn

nr(F (X)/F ) and
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the unramified Witt ring Wnr(F (X)/F ) as follows:

Hn
nr(F (X)/F ) : = ker(Hn(F (X)) →

∐

x∈X(1)

Hn−1(F (x))),

Wnr(F (X)/F ) : = ker(W (F (X)) →
∐

x∈X(1)

W (F (x))).

Besides that, we set

Innr(F (X)/F ) := ker(In(F (X)) →
∐

x∈X(1)

In−1(F (x))).

Clearly, Innr(F (X)/F ) = In(F (X)) ∩ Wnr(F (X)/F ). For n ≤ 4, the ho-
momorphism en : In(F (X)) → Hn(F (X)) determines the homomorphism
en : Innr(F (X)/F ) → Hn

nr(F (X)/F ).
Since the image of the homomorphism Hn(F ) → Hn(F (X)) belongs to

Hn
nr(F (X)/F ), we get the homomorphism ηn2,X : Hn(F ) → Hn

nr(F (X)/F ).

The cokernel of this homomorphism will be denoted by H̃n
nr(F (X)/F ):

H̃n
nr(F (X)/F ) := coker(ηn2,X : Hn(F ) → Hn

nr(F (X)/F )).

For a form φ, we set H̃n
nr(F (φ)/F ) := H̃n

nr(F (Xφ)/F ), where Xφ is the projec-
tive quadric corresponding to the form φ.

The following statement is well known (see, e.g., [KRS1, Prop.2.5]).

Lemma 5.1. If φ is an isotropic form over F , then H̃n
nr(F (φ)/F ) = 0. If two

forms φ1 and φ2 are stable rational equivalent (i.e., φ1
st∼ φ2), then

H̃n
nr(F (φ1)/F ) ' H̃n

nr(F (φ2)/F ).

To state the following theorem, we need one more notation:

Hn(F (X)/F )0 = {α ∈ Hn(F (X)/F ) | (−1) ∪ α = 0 ∈ Hn+1(F )}.
We note, that Hn(F (X)/F )0 is a subgroup of Hn(F ).

The essential part of the following theorem is contained in the paper of B.
Kahn, M. Rost, and R. Sujatha [KRS1].

Theorem 5.2. Let X = Xφ be the projective quadric corresponding to the
quadratic form φ of dimension ≥ 9. Then

(1) There exists a natural exact sequence

0 −−−→ H4(F (X)/F )0
δ−−−→ H̃4

nr(F (X)/F )
ε−−−→ Tors CH3X.

(2) The orders 4 of the groups H4(F (X)/F )0, H̃
4
nr(F (X)/F ), and Tors CH3X

are at most 2.
(3) If φ is not a 4-fold Pfister neighbor, then H 4(F (X)/F )0 = 0. This (in

particular) means that the homomorphism

ε : H̃4
nr(F (X)/F ) → Tors CH3X

is injective and |H̃4
nr(F (X)/F )| ≤ |TorsCH3X| ≤ 2.

4Below we will use the notation |A| for the order of a set A.
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(4) If φ is a 4-fold neighbor, then the homomorphism ε is zero and the homo-
morphism δ is an isomorphism

δ : H4(F (X)/F )0 ' H̃4
nr(F (X)/F ).

Proof. (1) This is a formal consequence of [KRS1, Prop.3 and Th.6(1)].
(3) The group H4(F (φ)/F ) is zero in view of Theorem 4.4. Hence, its sub-

group H4(F (φ)/F )0 is also zero. The rest of the statement is a formal conse-
quence of the first item of this theorem and Theorem 3.1.

(4) By Theorem 4.4, the group H4(F (X)/F )0 is finite. By Item (1), it

suffices to prove that |H̃4
nr(F (X)/F )| = |H4(F (X)/F )0|. Since the groups

H4(F (X)/F )0 and H̃4
nr(F (X)/F ) are stably birational invariants of X, we can

change the 4-fold Pfister neighbor φ by its associated 4-fold Pfister form. Thus,
we can assume that dim φ = 16. In this case, we have Tors CH3(Xφ) = 0
in view of Theorem 3.1. By Item (1) of the theorem, we obtain that δ is an
isomorphism, and hence |H̃4

nr(F (X)/F )| = |H4(F (X)/F )0|.
(2) The groups H4(F (X)/F )0 and Tors CH4(Xφ) have orders at most 2 in

view of Theorems 4.4 and 3.1. After this, the statement concerning the group
H̃4
nr(F (X)/F ) follows readily from Items (3) and (4).

Corollary 5.3. Let φ be a form of dimension ≥ 9. Suppose that φ is not a
4-fold Pfister neighbor and H̃4

nr(F (φ)/F ) 6= 0. Then

H̃4
nr(F (φ)/F ) ' Tors CH3Xφ ' Z/2Z

and the homomorphism ε : H̃4
nr(F (φ)/F ) → Tors CH3Xφ is an isomorphism.

Proof. Obvious in view of Item (3) of Theorem 5.2.

Corollary 5.4. ([KRS1, Cor. 8(3)(a)]). If dim φ > 12 and φ is not a 4-fold
neighbor, then H̃4

nr(F (φ)/F ) = 0.

Proof. Follows from Theorems 5.2(3) and Theorem 3.1.

Corollary 5.5. Let ψ be a 4-fold Pfister neighbor. Let E/F be an extension
such that H4(E/F ) = 0 (for example, E = F (φ), where φ is a form of dimen-
sion ≥ 9 which is not a 4-fold neighbor).

Then the homomorphism H̃4
nr(F (Xψ)/F ) → H̃4

nr(E(Xψ)/E) is injective.

Proof. Since H4(F ) → H4(E) is injective, it follows that the homomorphism
H4(F (Xψ)/F )0 → H4(E(Xψ)/E)0 is also injective (because H4(F (Xψ)/F )0 is
a subgroup of H4(F )). Now the corollary follows from Theorem 5.2(4).

6. Pfister neighbors over function fields

Definition 6.1. Let φ be a quadratic form over F . By Pf(φ) we denote the
form defined as follows:

• if φ is not a Pfister neighbor, then Pf(φ) = 0,
• if φ is a Pfister neighbor of a Pfister form π, we set Pf(φ) = π.
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Lemma 6.2. Let X be a smooth F -variety, and let φ be a quadratic form over
F . Then Pf(φF (X)) ∈ Wnr(F (X)/F ).

Proof. We can assume that 1 ∈ DF (φ). Let π = Pf(φF (X)). If π = 0, the
statement is trivial. Hence we can assume that φF (X) is a Pfister neighbor
of a Pfister form π ∈ Pn(F (X)). We must prove that δx(π) = 0 for any
x ∈ X(1). Since π ∈ In(F (X)), it follows that δx(π) ∈ In−1(F (x)). Since
1 ∈ DF (φ), we have φF (X) ⊂ π. Let ξ be an F (X)-form such that φF (X) ⊥
ξ = π. Clearly, dim ξ < 2n−1. Since φ is defined over F , it follows that
δx(φF (X)) = 0. Therefore, δx(π) = δx(ξ). Since dim ξ < 2n−1 and δx(ξ) ∈
In−1(F (x)), the Arason–Pfister Hauptsatz shows that δx(π) = 0. Therefore,
π ∈ Wnr(F (X)/F ).

Corollary 6.3. Let X be a smooth F -variety and φ be a quadratic form over
F . Suppose that φF (X) is a Pfister neighbor of π ∈ Pn(F (X)), where n ≤ 4.
Then en(π) ∈ Hn

nr(F (X)/F ).

Lemma 6.4. Let φ be a quadratic form over F , and let E = F (φ). Let X be a
smooth F -variety. Suppose that φF (X) is an anisotropic n-fold Pfister neighbor
(n ≤ 4). Then one of the following conditions holds:

• the kernel of the natural homomorphism

iL/F : H̃n
nr(F (X)/F ) → H̃n

nr(E(X)/E)

contains the nonzero element ẽn(Pf(φF (X))). In particular, iL/F is not

injective and H̃n
nr(F (X)/F ) 6= 0.

• Hn(F (φ,X)/F ) ) Hn(F (X)/F ). In particular, Hn(F (φ,X)/F ) 6= 0 and
Hn(F ) 6= 0.

Proof. Let π = Pf(φF (X)). By Corollary 6.3, we have en(π) ∈ Hn
nr(F (X)/F ).

Case 1: the element en(π) is not defined over F . In this case, the element
en(π) determines the nonzero element ẽn(π) ∈ H̃n

nr(F (X)/F ). In particular,

H̃n
nr(F (X)/F ) 6= 0. Since φF (X) is a Pfister neighbor of π, we conclude that π

is hyperbolic over the function field of φF (X). Since the function field of φF (X)

coincides with E(X), we see that the element ẽn(π) maps to zero under the

homomorphism iL/F : H̃n
nr(F (X)/F ) → H̃n

nr(E(X)/E).
Case 2: the element en(π) ∈ Hn(F (X)) is defined over F . Let λ ∈ Hn(F )

be an element such that en(π) = λF (X). Since π is anisotropic, it follows
that en(π) 6= 0 (see Theorem 4.1). Hence λ /∈ Hn(F (X)/F ). Since φF (X)

is a subform of π, it follows that πF (φ,X) is hyperbolic. Hence, λF (φ,X) =
en(πF (φ,X)) = 0. Therefore, λ ∈ Hn(F (φ,X)/F ). Thus, we have proved that λ
belongs to the group Hn(F (φ,X)/F ) but does not belong to Hn(F (X)/F ).
Since Hn(F (φ,X)/F ) ⊃ Hn(F (X)/F ), we obtain that Hn(F (φ,X)/F ) )

Hn(F (X)/F ).

Corollary 6.5. Let F be a field such that H4(F ) = 0. Let ψ be a form over F
such that H̃4

nr(F (ψ)/F ) = 0. Then for any form φ over F , the form φF (ψ) is
not an anisotropic 4-fold neighbor.
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Corollary 6.6. Let F be a field such that H4(F ) = 0, and let ψ be a form of
dimension ≥ 9 over F . Suppose that Tors CH3(Xψ) = 0 (for example, dimψ >
12). Then for any form φ over F , the form φF (ψ) is not an anisotropic 4-fold
neighbor.

Proof. Since H4(F ) = 0, the form ψ is not an anisotropic 4-fold neighbor.
By Theorem 5.2, we have |H̃4

nr(F (ψ)/F )| ≤ |Tors CH3(Xψ)| = 0. Hence,

H̃4
nr(F (ψ)/F ) = 0. Now, the required result follows from Corollary 6.5.

Lemma 6.7. Let F be a field such that H4(F ) = 0. Let φ1, φ2, and ψ be forms
of dimension ≥ 9 such that (φ1)F (ψ) and (φ2)F (ψ) are anisotropic 4-fold Pfister

neighbors. Then (φ1)F (ψ)
st∼ (φ2)F (ψ).

Proof. Let πi = Pf((φi)F (ψ)) for i = 1, 2. By our assumption, the forms π1

and π2 are anisotropic. Hence, e4(π1) and e4(π2) are nonzero elements of the
group H4

nr(F (ψ)/F ). Since |H̃4
nr(F (ψ)/F )| ≤ 2 and H4(F ) = 0, we have

|H4
nr(F (ψ)/F )| ≤ 2. Therefore, e4(π1) = e4(π2). Thus π1 = π2, and so

(φ1)F (ψ) and (φ2)F (ψ) are Pfister neighbors in the same Pfister form. Hence

(φ1)F (ψ)
st∼ (φ2)F (ψ).

Lemma 6.8. Let φ be an anisotropic form of dimension 9 which is not a Pfister
neighbor. Let ψ be a 4-fold Pfister neighbor. Then φF (ψ) is anisotropic form
which is not a Pfister neighbor.

Proof. The form φF (ψ) is anisotropic in view of Corollary 1.12. Suppose that
φF (ψ) is a Pfister neighbor. Let X = Xψ and E = F (φ). By Corollary 4.9, we
have H4(F (φ,X)/F ) = H4(F (X)/F ). By Corollary 5.5, the homomorphism

H̃4
nr(F (X)/F ) → H̃4

nr(E(X)/E) is injective. We get a contradiction to the
statement of Lemma 6.4.

Corollary 6.9. Let φ be an essential 9-dimensional form, and ψ be a 4-fold
Pfister neighbor. Then φF (ψ) is essential.

Proof. Follows from Lemma 6.8 and Lemma 1.5.

Proposition 6.10. For any field F there exists a field extension E/F with the
following properties:

(i) E has no nontrivial odd extensions, I 4(F ) = 0, and H4(F ) = 0 (in par-
ticular, cd2(F ) ≤ 3),

(ii) for any F -form τ , we have ind τE = ind τ ,
(iii) for any anisotropic 9-dimensional form φ which is not a Pfister neighbor,

the form φE is also anisotropic and is not a Pfister neighbor.
(iv) for any essential 9-dimensional form φ over F , the form φE is also essen-

tial,
(v) the homomorphism W (F )/In(F ) → W (E)/In(E) is injective for all n ≤

4,
(vi) for any 10-dimensional form φ with nontrivial discriminant d the form

φE(
√
d) is hyperbolic only if φF (

√
d) is hyperbolic.
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Proof. Let us construct the fields

F0 ⊂ F1 ⊂ · · · ⊂ F2i ⊂ F2i+1 ⊂ . . .

as follows. First, we set F−1 = F .
If n = 2i, we define Fn as the maximal odd extension of Fn−1.
If n = 2i+ 1, we define Fn as the free composite of all fields Fn−1(ψ), where

ψ runs over all 4-fold Pfister forms over Fn−1.
Now, we set E = ∪n≥0Fn. We claim that E satisfies all needed properties.
(i) By definition, E has no odd extensions. Clearly all 4-fold Pfister forms

over E are isotropic. Hence I4(E) = 0. Therefore H4(E) = 0 and cd2(E) ≤ 3
(see Proposition 4.6.)

(ii) Follows from Lemmas 1.2 and 1.5;
(iii) Follows from Lemmas 1.14 and 6.8;
(iv) Follows from Lemma 1.24 and Corollary 6.9;
(v) Follows from Lemma 1.2 and Corollary 4.5;
(vi) Follows from Corollary 1.7.

Remark 6.11. It is possible to include many additional properties of the field
extension E/F in the formulation of Proposition 6.10. Here we point out only
the following modification of property (iii) (which has the same proof): Let φ be
a 9-dimensional form, and let X be an F -variety such that φF (X) is anisotropic
and is not a Pfister neighbor. Then φE(X) is also anisotropic and is not a Pfister
neighbor.

Lemma 6.12. Let E/F be a field extension constructed 5 in Theorem 6.10.
Let φ be a form with maximal splitting satisfying the condition 9 ≤ dimφ ≤ 16.
Then

(1) If φ is anisotropic and is not a Pfister neighbor, then φE is also anisotropic
and is not a Pfister neighbor.

(2) If ψ is an F -form such that φF (ψ) is anisotropic and is not a Pfister neigh-
bor, then φE(ψ) is also anisotropic and is not a Pfister neighbor.

Proof. (1) Let φ0 be a 9-dimensional subform of φ. By Theorem 1.11, φ0
st∼ φ

and hence (φ0)E
st∼ φE. Replacing φ by φ0, we can assume that dimφ = 9. In

this case the required statement coincides with Item (iii) of Theorem 6.10.
(2). Taking into account Remark 6.11, one can can give the same proof as

for Item (1).

Proposition 6.13. Let φ be an anisotropic form of dimension 9 that is not
a Pfister neighbor. Let ψ be a form of dimension > 12. Then φF (ψ) is an
anisotropic form that is not a Pfister neighbor.

Proof. In view of Proposition 6.10, we can assume that H4(F ) = 0. By Corol-
lary 1.12, the form φF (ψ) is anisotropic. Now, the required result follows imme-
diately from Corollary 6.6.

5Here we mean not only the formulation of Theorem 6.10, but also the proof of this
theorem. In all other statements we will refer the reader only to the formulation of Theorem
6.10.
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Corollary 6.14. Let φ be an anisotropic form and ψ be a form of dimension
> 12. Suppose that φF (ψ) is an anisotropic 4-fold Pfister neighbor. Then φ is a
4-fold Pfister neighbor.

Proof. Since φF (ψ) is an anisotropic 4-fold Pfister neighbor, it follows that φF (ψ)

has maximal splitting and 9 ≤ dimφ ≤ 16. By [H1, Lemma 5], the form φ
also has maximal splitting. Let φ0 be an arbitrary 9-dimensional subform of φ.
Since φF (ψ) is a 4-fold Pfister neighbor, it follows that (φ0)F (ψ) is a 4-fold Pfister
neighbor. By Proposition 6.13, φ0 is a 4-fold neighbor. Since φ has maximal
splitting, it follows that (φ0)F (φ) is isotropic. Hence φ is a 4-fold neighbor.

Remark 6.15. As it will be shown in the following sections, Proposition 6.13
and Corollary 6.14 cannot be generalized to the case of 12-dimensional forms
ψ.

7. Construction of a field with u-invariant 9

In this section, we prove Theorems 0.1 and 0.3, and Conjecture 0.10. We
start the proofs with two easy lemmas.

Lemma 7.1. Let φ, ψ, and ψ0 be forms over F such that ψF (ψ0) is isotropic
(for example, ψ0 ⊂ ψ). Suppose that φF (ψ0) is an essential 9-dimensional form.
Then φF (ψ) is also essential.

Proof. Let E = F (ψ0). Since ψE = ψF (ψ0) is isotropic, it follows that the
extension E(ψ)/E is purely transcendental. Since φE = φF (ψ0) is essential and
E(ψ)/E is purely transcendental, Lemma 1.24 implies that φE(ψ) is essential.
Since F (ψ) ⊂ E(ψ), it follows that φF (ψ) is also essential.

Lemma 7.2. Let F be a field such that H4(F ) = 0, and let φ be an essential
9-dimensional F -form. Let ψ be a form of dimension ≥ 9 such that ψ 6∼ φ and
Tors CH3(Xψ) = 0. Then φF (ψ) is an essential form.

Proof. By Theorem 1.13, the form φF (ψ) is anisotropic. Lemma 1.5 shows that
indφF (ψ) ≥ 4. By Corollary 6.6, the form φF (ψ) is not a Pfister neighbor.
Therefore, φF (ψ) is an essential form.

The following theorem is a basic tool in the proof of our main results con-
cerning the u-invariant.

Theorem 7.3. Let φ be an essential 9-dimensional form over F . Then for an
F -form ψ of dimension ≥ 9, the following conditions are equivalent:

(1) dimψ = 9 and there exists k ∈ F ∗ such that ψ ≡ kφ (mod I4(F )),
(2) the form φF (ψ) is not essential.

In particular, φF (ψ) is always essential if dimψ ≥ 10.

Proof. (1)⇒(2). Let ψ and k be as in (1). Let ψ0 be a 7-dimensional F (ψ)-form
such that ψF (ψ) = ψ0 ⊥ H. Put π = φF (ψ) ⊥ −kψ0. Clearly, dim π = 9+7 = 16.
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In the Witt ring W (F (ψ)), we have π = φF (ψ) − kψ0 = (φ − kψ)F (ψ) ∈
I4(F (ψ)). By the Arason-Pfister Hauptsatz, π ∈ GP4(F (ψ)). Since φF (ψ) ⊂ π,
the form φF (ψ) is a Pfister neighbor. Therefore, φF (ψ) is not an essential form.

(2)⇒(1). First of all, we introduce the following notation:

Definition 7.4. Let φ and ψ be forms over F . We will write φ ∼ ψ
(mod In(F )) if there exists k ∈ F ∗ such that φ ≡ kψ (mod In(F )). Other-
wise, we write φ 6∼ φ (mod In(F )).

Remark 7.5. In Definition 7.4 we do not assume that dimφ = dimψ.

Lemma 7.6. Let φ be an odd-dimensional form and n ≥ 2. Then for a form
ψ the following conditions are equivalent:

(i) ψ ∼ φ (mod In(F )),
(ii) ψ ≡ kφ (mod In(F )), where k = d±ψ/d±φ.

Proof. (i)⇒(ii). Let x ∈ F ∗ be such that ψ ≡ xφ (mod In(F )). It suffices to
verify that x ≡ d±ψ/d±φ ∈ F ∗/F ∗2. Since n ≥ 1 and dimφ is odd, it follows
that dimψ is odd. Since n ≥ 2, it follows that d±ψ ≡ d±(xφ) ∈ F ∗/F ∗2. Hence,
x ≡ d±ψ/d±φ ∈ F ∗/F ∗2.

(ii)⇒(i). Obvious.

Corollary 7.7. Let φ be an odd-dimensional form and let n ≥ 2. Let E/F
be an extension such that the homomorphism W (F )/In(F ) → W (E)/In(E) is
injective. Then for any F -form ψ, the condition ψ 6∼ φ (mod In(F )) implies
that ψE 6∼ φE (mod In(E)).

Proof. Suppose that ψE ∼ φE (mod In(E)). By Lemma 7.6, ψE ≡ kφE
(mod In(E)), where k = d±ψ/d±φ. Since the homomorphism W (F )/In(F ) →
W (E)/In(E) is injective, it follows that ψ ≡ kφ (mod In(F )). Hence, ψ ∼ φ
(mod In(F )), a contradiction.

Corollary 7.8. Let φ and ψ be odd-dimensional forms such that φ 6∼ ψ
(mod I4(F )). Then

(a) if E/F is an extension such that W (F )/I 4(F ) → W (E)/I4(E) is injective,
then φE 6∼ ψE (mod I4(E)),

(b) if τ1, . . . , τm are forms of dimension ≥ 9, then φF (τ1,...,τm) 6∼ ψF (τ1,...,τm)

(mod I4(F (τ))).

Proof. Statement (a) follows from Corollary 7.7; Statement (b) follows from
Statement (a) and Corollary 4.5.

Lemma 7.9. Let ψ be an anisotropic form of dimension 10. Then there exists
an extension E/F and a 9-dimensional form ψ0 ⊂ ψ such that:

(1) for any 9-dimensional form φ over F we have φE 6∼ ψ0 (mod I4(E)).
(2) E/F is a purely transcendental field extension.
(3) indψ0 ≥ 4 except for the cases where

– either ψ ∈ I2(F ) and indψ ≤ 2,
– or ψ /∈ I2(F ) and indψ = 1.
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Proof. We define ψ0 as the “generic subform of ψ of codimension 1”. Let us
give the explicit definition of ψ0 and E. Let F̃ = F (t) and ψ̃ = ψF̃ ⊥ 〈−t〉.
We define E as F̃ (ψ̃). Since ψ̃E is isotropic, there exists a E-form ψ0 such that

ψ̃E = ψ0 ⊥ H. We have

ψ0 ⊥ 〈t〉 ⊥ H = ψ̃E ⊥ 〈t〉 = ψE ⊥ 〈−t〉 ⊥ 〈t〉 = ψE ⊥ H.

Hence, ψ0 ⊥ 〈t〉 = ψE . Therefore, ψ0 is a 9-dimensional subform of ψE .

(1) Let φ be an arbitrary 9-dimensional form over F . We set φ̃ = φF̃ and

k̃ = d±ψ̃/d±φ̃. Clearly, k̃ = kt, where k = d±ψ/d±φ.

We claim that ψ̃ 6∼ φ̃ (mod I4(F̃ )). Indeed, assuming the contrary, we have

ψ̃ ≡ k̃φ̃ (mod I4(F̃ )). Then ψF̃ + 〈−t〉 ≡ tkφF̃ (mod I4(F̃ )). Computing the
homomorphism δ1

t (see e.g., [Lam1, Ch.6. Cor.1.6]), we get ψ ≡ 0 (mod I3(F )).
Since dimψ = 10, Pfister’s theorem shows that ψ is isotropic, a contradiction.

Since E = F̃ (ψ̃) and dim ψ̃ = 11 ≥ 9, Corollary 7.8(2), shows that φE 6∼ ψ̃E
(mod I4(E)). Since ψ̃E coincides with ψ0 in the Witt ring W (E), we have
φE 6∼ ψ0 (mod I4(E)).

(2) Obvious in view of Lemma 1.22.

(3) Suppose that ψ is not “exceptional”. By Lemma 1.4, ind ψ̃ ≥ 4. By

Lemma 1.5, we have indψ0 = ind(ψ̃F̃ (ψ̃)) ≥ 4.

Now, we return to the proof of the implication (2)⇒(1) in Theorem 7.3.
We start with the following case:
Case 1. dimψ = 10, ψ ∈ I2(F ), and indψ ≥ 4.
Since dimψ 6= 9, we must prove that φF (ψ) is an essential form. Let E/F

and ψ0 be as in Lemma 7.9. Since E/F is purely transcendental, it follows that
φE is essential and indψE = indψ ≥ 4 (see Lemmas 1.2 and 1.24). Replacing
the field F by E, we can assume that the 9-dimensional form ψ0 is defined over
the ground field and φ 6∼ ψ0 (mod I4(F )). After this, applying Proposition
6.10 together with Corollary 7.8(a), we can assume that H4(F ) = 0. Since
indψ0 = indψ ≥ 4, Proposition 3.7(iv) shows that Tors CH3(Xψ0) = 0. Since
φ 6∼ ψ0 (mod I4(F )), we have φ 6∼ ψ0. By Lemma 7.2, the form φF (ψ0) is
essential. By Lemma 7.1, the form φF (ψ) is also essential.

Case 2. dimψ = 10, ψ ∈ I2(F ), and indψ ≤ 2.
Since dimψ 6= 9, we must prove that φF (ψ) is an essential form. By

Proposition 6.10, we can assume that H4(F ) = 0. Our assumption concern-
ing the form ψ shows that ψ (up to similarity) can be written in the form
π′ ⊥ −〈〈u, v〉〉′, where π′ is the pure subform of a 3-fold Pfister form π and
〈〈u, v〉〉′ is the pure subform of 〈〈u, v〉〉 (see e.g, [H2, Th. 5.1]). Consider the
subform ψ0 = π′ ⊥ 〈u, v〉 ⊂ ψ. Since indψ0 = indψ ≤ 2 < indφ, we have
ψ0 6∼ φ. By Lemma 3.12(i), we have Tors CH3(Xψ0) = 0. By Lemma 7.2, the
form φF (ψ0) is essential. Lemma 7.1 shows the form φF (ψ) is also essential.

Case 3. dimψ = 9. Suppose that φ 6∼ ψ (mod I4(F )). We must verify that
φF (ψ) is essential.
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Let τ = ψ ⊥ 〈−d〉, where d = detψ. Since τ ∈ I2(F ) and dim τ = 10, the
results of Cases 1 and 2 show that φF (τ) is an essential form. By Corollary 7.8,
we have φF (τ) 6∼ ψF (τ) (mod I4(F (τ))). Hence, replacing F by F (τ), we can
assume that τ is isotropic. Then ψ has the form ψ = ψ0 ⊥ 〈d〉, where ψ0 is a
8-dimensional form from I2(F ). By Proposition 6.10 and Corollary 7.8(a), we
can assume that H4(F ) = 0. All needed properties of φ and ψ are preserved.
In particular, we still have φ 6∼ ψ (mod I4(F )). Since H4(F ) = 0, all 4-fold
Pfister neighbors are isotropic. Hence, we can assume that ψ is not a Pfister
neighbor. Then ψ0 /∈ GP3(F ) and therefore, indψ = indψ0 ≥ 2. By Lemma
3.12(ii), we have Tors CH3(Xψ) = 0. By Lemma 7.2, the form φF (ψ) is essential.

Case 4. dimψ ≥ 10. Changing ψ by a 10-dimensional subform, we can
assume that dimψ = 10 (Lemma 7.1). As in Case 1, we can assume that there
exists a 9-dimensional subform ψ0 ⊂ ψ such that ψ0 6∼ φ (mod I4(F )). By Case
3, the form φF (ψ0) is essential. By Lemma 7.1, the form φF (ψ) is also essential.

The proof of Theorem 7.3 is complete.

Corollary 7.10. Let φ be an essential 9-dimensional form, and let ψ1, . . . , ψm
be forms of dimension ≥ 9. Then the following conditions are equivalent:

(1) there exists i such that dimψi = 9 and ψi ∼ φ (mod I4(F )),
(2) the form φF (ψ1,...ψm) is not essential.

In particular, the form φF (ψ1,...,ψm) is always essential if dimψi ≥ 10 for all
i = 1, . . . , m.

Proof. (1)⇒(2). Obvious in view of Theorem 7.3.
(2)⇒(1). Suppose that φF (ψ1,...ψm) is not an essential form. Set F0 = F ,

F1 = F (ψ1), F2 = F (ψ1, ψ2), . . . , Fm = F (ψ1, . . . ψm). By our assumption,
φF0 is essential and φFm is not. Hence, there exists i ≥ 1 such that φFi−1

is
essential and φFi

is not essential. Since Fi = Fi−1(ψi), Theorem 7.3 shows
that dimψi = 9 and (ψi)Fi−1

∼ φFi−1
(mod I4(Fi−1)). Finally, Corollary 7.8(b)

shows that ψi ∼ φ (mod I4(F )).

Proof of Theorem 0.3. Implication (1)⇒(2) was proved in Section 1.
(2)⇒(1). Let us construct the fields

F0 ⊂ F1 ⊂ · · · ⊂ F3i ⊂ F3i+1 ⊂ F3i+1 ⊂ . . .

as follows. First, we set F−1 = F .
If n = 3i, we define Fn as the maximal odd extension of Fn−1.
If n = 3i+ 1, we define Fn as the free composite of the fields Fn−1(ψ), where

ψ runs over all Fn−1-forms of dimension ≥ 10.
If n = 3i+ 2, we define Fn as the free composite of the fields Fn−1(ψ), where

ψ runs over all 9-dimensional Fn−1-forms satisfying the condition ψ 6∼ φFn−1

(mod I4(Fn−1)).
Induction on n, Lemma 1.14, and Corollary 7.10 show that φFn is an essential

form for all n. Now, we set E = ∪n≥0Fn. Clearly, φE is an essential form. In
particular, φE is anisotropic. Hence u(E) ≥ dim φ = 9. By the definition
of F3i+1, all 10-dimensional forms over E are isotropic. Hence, u(E) = 9.
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Therefore I4(E) = 0. By the definition of F3i+2, each anisotropic 9-dimensional
form ψ over E satisfies the condition ψ ∼ φE (mod I4(E)). Since I4(E) = 0,
we have ψ ∼ φE. Clearly, E has no odd extensions. Taking into account the
equation I4(E) = 0, we conclude that cd2(E) ≤ 3 (see Proposition 4.6). Now,
it suffices to verify that cd2(E) 6≤ 2. Indeed, assuming the contrary, we obtain
I3(E) = 0. In this case, [Lam1, Ch. 11, Lemma 4.9] claims that u(E) is even.
We get a contradiction.

Proof of Theorem 0.1. By Theorem 0.3, it suffices to construct at least one
example of a 9-dimension essential form. We present here the following exam-
ple: Let F0 be an arbitrary field and F = F0((t1)) . . . ((t9)). We define φ as
〈t1, . . . , t9〉. An easy computation using Tignol’s Theorem (see Corollary 1.4)
shows that indφ = 16. By Springer’s theorem, φ is anisotropic. Now, it suf-
fices to prove that φ is not a Pfister neighbor. Assume the contrary. Let µ
be the complementary 7-dimensional form. Since φ ⊥ µ ∈ GP4(F ), it follows
that φ ≡ −µ (mod I3(F )) and hence indφ = indµ. Since dimµ = 7, we have
indµ ≤ 8, a contradiction.

At the end of this section we present a proof of Conjecture 0.10. 6

Proof of Conjecture 0.10. Let φ be an anisotropic 10-dimensional form with
maximal splitting. We can assume that φ is not a Pfister neighbor. We must
prove that φ ' 〈〈d〉〉 ⊗ τ for a suitable d ∈ F ∗ and a 5-dimensional form τ . Let
us consider the following three cases.

Case 1: φ ∈ I2(F ). Since all 10-dimensional forms from I2(F ) with maximal
splitting are necessarily Pfister neighbors (see the last Item of Theorem 1.10),
we get a contradiction to our assumption.

Case 2: φ /∈ I2(F ) and indφ = 1. Let d = detφ and L = F (
√
d). Since φL ∈

I2(L) and indφL = indφ = 1, it follows that φL ∈ I3(L). By Pfister’s theorem
the form φL is isotropic. Since φ has maximal splitting, we have dim(φL)an ≤ 6.
Then the Arason–Pfister Hauptsatz implies that φL is hyperbolic. Therefore, φ
is divisible by 〈〈d〉〉. Hence φ has the form 〈〈d〉〉 ⊗ τ with dim τ = 5.

Case 3: φ /∈ I2(F ) and indφ ≥ 2. By Lemma 7.9, there exists a purely
transcendental extension E/F and a 9-dimensional subform φ0 ⊂ φE with
indφ0 ≥ 4. Since φ has maximal splitting, the form (φ0)E(φ) is isotropic. As-
sume that φ0 is a Pfister neighbor. Since (φ0)E(φ) is isotropic, it follows that
φE is a Pfister neighbor. Since E/F is unirational, φ is also a Pfister neighbor
(Lemma 1.23). We get a contradiction. Hence φ0 is not a Pfister neighbor.
Then φ0 is an essential E-form. Since dimφE = 10, it follows from Theo-
rem 7.3 that (φ0)E(φ) is anisotropic. We get a contradiction, and the proof is
complete.

8. Special pair of forms: definition and basic properties

The main goal of this section is to study the properties of some specific class of
pairs of forms. We will call these pairs special (see Definition 8.3 below). Since

6This conjecture was proved in [Izh3] in the case when charF = 0 and
√
−1 ∈ F ∗.
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many basic properties of special pairs are closely related to linkage properties
of Pfister forms, we recall some results of R. Elman and T. Y. Lam on this
subject.

Theorem 8.1. ([EL3, §4]) 7 Let τ1 ∈ Pn1(F ) and τ2 ∈ Pn2(F ).

(1) Let k ∈ F ∗ be such that the form τ1 ⊥ −kτ2 is isotropic. Then the forms
(τ1 ⊥ −kτ2)an and (τ1 ⊥ −τ2)an are similar. In particular,

dim(τ1 ⊥ −kτ2)an = dim(τ1 ⊥ −τ2)an.

(2) Let ρ ∈ Pn(F ), µ ∈ Pm(F ), and ν ∈ Pk(F ) be such that τ1 ' ρ ⊗ µ,
τ2 ' ρ⊗ ν, and m, k > 0. Let µ′ and ν ′ be the pure subforms of µ and ν.
Then
– either (τ1 ⊥ −τ2)an ' ρ ⊗ (µ′ ⊥ −ν′) (in particular, this means that

the form ρ⊗ (µ′ ⊥ −ν′) is anisotropic),
– or there exist µ0 ∈ Pm−1(F ), ν0 ∈ Pk−1(F ), and d ∈ F ∗ such that
τ1 ' ρ⊗ 〈〈d〉〉 ⊗ µ0 and τ2 ' ρ⊗ 〈〈d〉〉 ⊗ ν0.

Lemma 8.2. Let ρ = τ⊗q, where q is an Albert form and τ ∈ Pn(F ). Suppose
that there exists a form ρ̃ such that dim ρ̃ < dim ρ and ρ ≡ ρ̃ (mod In+3(F )).
Then the form ρ is isotropic.

Proof. Assume that ρ is anisotropic. Then τ is anisotropic. We obviously have
ρ ∈ In+2(F ). Since ρ̃ ≡ ρ (mod In+3(F )), we also have ρ̃ ∈ In+2(F ). Clearly,
dim ρ̃ < dim ρ = 6 · 2n < 2n+3.

If we assume that ρ̃ is hyperbolic, we get ρ ≡ ρ̃ ≡ 0 (mod In+3(F )). Since
dim ρ < 2n+3, the Arason–Pfister Hauptsatz shows that ρ is hyperbolic. We
get a contradiction. Hence, ρ̃ is not hyperbolic. Changing ρ̃ by its anisotropic
part, we can assume that ρ̃ is non-zero and anisotropic.

We have ρ̃F (τ) ≡ ρF (τ) ≡ 0 (mod In+3(F )). Since dim ρ̃ < 2n+3, the Arason–
Pfister Hauptsatz shows that ρ̃F (τ) is hyperbolic. Hence there exists a form λ
such that ρ̃ = τ ⊗ λ. Since dim τ = 2n and dim ρ̃ < dim ρ = 6 · 2n, it follows
that dimλ < 6. First, consider the case when dimλ is odd. Then 〈1〉 ≡ λ
(mod I(F )) and we have τ ≡ τ ⊗ λ ≡ ρ̃ = 0 (mod In+1(F )). Since dim τ = 2n,
the Arason-Pfister Hauptsatz shows that τ is hyperbolic, a contradiction. Now,
we can assume that dimλ is even. Since dimλ < 6, we have dim λ ≤ 4. Hence,
dim ρ̃ = dim(τ ⊗ λ) ≤ 2n · 4 = 2n+2. Since ρ̃ ∈ In+2(F ), the Arason-Pfister
Hauptsatz implies that ρ̃ ∈ GPn+2(F ). Therefore, dim ρ̃ = 2n+2 and the form
ρ̃F (ρ̃) is hyperbolic. Hence ρF (ρ̃) ≡ ρ̃F (ρ̃) = 0 (mod In+3(F (ρ̃))). Since dim ρ <
2n+3, the Arason–Pfister Hauptsatz shows that the form ρF (ρ̃) is hyperbolic.
Hence, the form ρ is divisible by ρ̃. On the other hand, dim ρ = 6 · 2n is not
divisible by dim ρ̃ = 2n+2, a contradiction.

7For the proof of the first statement, see the proof of Theorem 4.5 in [EL3] or [H4, Lemma
3.2]. The proof of the second statement is the same as Step 2 of the proof of Proposition 4.4
in [EL3].
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Definition 8.3. Let n and m be integers such that n ≥ 0 and m ≥ 2. We
say that (ρ, ρ0) is an (n,m)-special pair of forms if there exist u, v ∈ F ∗ and
τ ∈ Pn(F ), µ ∈ Pm(F ) such that

ρ ' τ ⊗ (µ′ ⊥ −〈〈u, v〉〉′) and ρ0 ' τ ⊗ (µ′ ⊥ 〈u, v〉),
where µ′ and 〈〈u, v〉〉′ are the pure subforms of µ and 〈〈u, v〉〉.

Our interest in special pairs is motivated by the following conjecture.

Conjecture 8.4. Let s be a positive integer and φ be an F -form such that:

• φ is not an s-fold Pfister neighbor,
• dim φ > 2s−1 and H̃s

nr(F (φ)/F ) 6= 0.

Then H̃s
nr(F (φ)/F ) ' Z/2Z and there exists an (n,m)-special pair (ρ, ρ0) with

the following properties:

(i) n ≥ 0, m ≥ 2, and m+ n + 1 = s,
(ii) ρF (φ) is isotropic and (ρ0)F (φ) is anisotropic,

(iii) the group H̃s
nr(F (φ)/F ) is generated by ẽs(Pf((ρ0)F (φ))).

Remark 8.5. (1) If s ≤ 2, then the group H̃s
nr(F (φ)/F ) is zero for all non

Pfister neighbors φ (see [KRS1, Th. 4 and Prop. 3]). Hence, in this case
the conjecture is obvious. We also note that for s ≤ 2 there are no integers
n and m satisfying condition (i).

(2) In the case s = 3, the conjecture follows easily from the results of [Kah3]
and [KRS1]. See also the following section: Example 9.2 and the proof of
Lemma 9.5.

(3) In the case s = 4, the conjecture will be proved in Section 12.
(4) In this section, we show (Theorem 8.6(2)) that condition (ii) of Conjecture

8.4 implies that (ρ0)F (φ) is an anisotropic s-fold Pfister neighbor. Hence
Pf((ρ0)F (φ)) is an anisotropic s-fold Pfister form.

In this section, we study the properties of (n,m)-special pairs. Let us start
with the following obvious observation: if (ρ, ρ0) is an (n,m)-special pair over
F , then (ρL, (ρ0)L) is an (n,m)-special pair over L for any field extension L/F .

All basic properties of (n,m)-special pair of forms are collected in the follow-
ing theorem.

Theorem 8.6. Let n and m be integers such that n ≥ 0 and m ≥ 2. Let (ρ, ρ0)
be an (n,m)-special pair of forms. Then

(1) dim ρ0 = 2n(2m + 1), dim ρ = 2n(2m + 2), and ρ0 is a subform of ρ. In
particular,

2n+m < dim ρ0 < dim ρ < 2n+m+1.

(2) The following conditions are equivalent:
(a) the form ρ0 is a Pfister neighbor,
(b) the form ρ contains an (n+m+ 1)-fold Pfister neighbor,
(c) there exists a form ρ̃ such that dim ρ̃ < dim ρ and ρ̃ ≡ ρ

(mod In+m+1(F )),
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(d) the form ρ is isotropic.
(3) If ρ0 is an anisotropic form, then

– ρ0 has maximal splitting,
– ρ is not a Pfister neighbor,
– (ρ0)F (ρ) is an anisotropic Pfister neighbor.

(4) If ρ is anisotropic, then i1(ρ) = 2n and dim(ρF (ρ))an = 2n+m.

Proof. Item (1) is obvious.
Let us prove Statement (2).
(a)⇒(b). Obvious.
(b)⇒(c). Suppose that ρ contains an (n+m+1)-fold Pfister neighbor. Then

we can write ρ in the form ρ = λ ⊥ µ, where λ is an (n + m + 1)-fold Pfister

neighbor. Then there exists a form λ̃ such that λ ⊥ −λ̃ ∈ GPn+m+1(F ). In

particular, λ̃ ≡ λ (mod In+m+1(F )). By the definition of Pfister neighbors, we

have dim λ̃ < dimλ. To complete the proof, it suffices to set ρ̃ = λ̃ ⊥ µ.
(c)⇒(d). Let ρ̃ be such that dim ρ̃ < dim ρ and ρ ≡ ρ̃ (mod In+m+1(F )).
Set π = (ρ ⊥ −ρ̃)an and λ = τ⊗µ. Clearly, π ∈ In+m+1(F ) and λ ∈ Pn+m(F ).

Since m ≥ 2, we have

dim π ≤ dim ρ+ dim ρ̃ < 2 dim ρ = 2n+1(2m + 2) ≤ 2n+1(2m + 2m−1) = 3 · 2n+m.

We can assume that π is a nonhyperbolic form (otherwise, ρan = ρ̃an and the
proof is obvious). Since π ∈ In+m+1(F ), it follows that dim π ≥ 2n+m+1. We
have proved 2 · 2n+m ≤ dim π < 3 · 2n+m.

We consider the cases m > 2 and m = 2 separately.
Case 1: m > 2. In the Witt ring, we have ρ = τ(µ− 〈〈u, v〉〉) = λ− τ 〈〈u, v〉〉.

Hence ρF (λ) = −τ 〈〈u, v〉〉F (λ). Therefore, dim(ρF (λ))an ≤ 2n+2. Taking into
account the inequality 6 < 2m, we have

dim(πF (λ))an ≤ dim(ρF (λ))an + dim ρ̃ < 2n+2 + dim ρ

≤ 2n+2 + 2n(2m + 2) = 2n(6 + 2m) < 2n+m+1.

Since π ∈ In+m+1(F ), the Arason–Pfister Hauptsatz shows that πF (λ) is hyper-
bolic. Hence, there exists a form ξ such that π = λ ⊗ ξ. Since dimλ = 2n+m

and 2 · 2n+m ≤ dim π < 3 · 2n+m, we conclude that dim ξ = 2. Let us write ξ in
the form ξ = k 〈〈d〉〉. Then π = λ⊗ ξ = kτ ⊗ µ⊗ 〈〈d〉〉. In the Witt ring W (F )
we have

ρ̃ = ρ− π = τ(µ− 〈〈u, v〉〉)− kτµ 〈〈d〉〉 =

= τµ 〈1,−k, kd〉 − τ 〈〈u, v〉〉 =

= τµ(〈〈k, d〉〉+ 〈d〉)− τ 〈〈u, v〉〉 =

= τ(dµ− 〈〈u, v〉〉) + τµ 〈〈k, d〉〉 .
Let ρ̂ = τ ⊗ (dµ ⊥ −〈〈u, v〉〉). Since τµ 〈〈k, d〉〉 ∈ GPn+m+2(F ), we have ρ̃ ≡ ρ̂
(mod In+m+2(F )). On the other hand, dim ρ̃+dim ρ̂ < dim ρ+dim ρ̂ ≤ 2n(2m+
2)+2n(2m+4) = 2n(2m+1 +6) < 2n+m+2. The Arason–Pfister Hauptsatz shows
that ρ̃an ' ρ̂an. Since dim ρ̃ < dim ρ < dim ρ̂, it follows that ρ̂ = τ ⊗ (dµ ⊥
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−〈〈u, v〉〉) is isotropic. Applying Theorem 8.1(1) to the forms τ1 = τ ⊗ µ and
τ2 = τ ⊗ 〈〈u, v〉〉, we see that ρ̂an is similar to ρan. Hence, ρan ∼ ρ̂an ' ρ̃an.
Since dim ρ̃ < dim ρ, the form ρ is isotropic.

Case 2: m = 2. Since µ ∈ Pm(F ) = P2(F ), there exist a, b ∈ F ∗

such that µ = 〈〈a, b〉〉. Then ρ = τ ⊗ (µ′ ⊥ −〈〈u, v〉〉′) = τ ⊗ q, where
q = 〈−a,−b, ab, u, v,−uv〉. Since q is an Albert form, the required statement
follows readily from Lemma 8.2.

(d)⇒(a). Let us assume that ρ is isotropic. Applying Theorem 8.1(2) to the
forms τ1 = τ ⊗ µ and τ2 = τ ⊗ 〈〈u, v〉〉, we see that there exists d ∈ F ∗ such
that τ ⊗ 〈〈d〉〉 divides the both forms τ ⊗ µ and τ ⊗ 〈〈u, v〉〉. Thus, there exists
µ0 ∈ Pm−1(F ) and k ∈ F ∗ such that τ ⊗ 〈〈d〉〉 ⊗ µ0 = τ ⊗ µ and τ ⊗ 〈〈d, k〉〉 =
τ ⊗ 〈〈u, v〉〉.

We claim that ρ0 is a subform of the Pfister form

π := τ ⊗ µ⊗ 〈〈−uvk〉〉 .
Besides, we claim that the complementary form is equal to

ρ′0 := uvτ ⊗ (kµ′0 ⊗ 〈〈d〉〉 ⊥ 〈−d〉).
Since dim ρ0 = 2n(2m +1), dim ρ′0 = 2n(2m− 1), and π ∈ Pn+m+1(F ), it suffices
to verify the equation ρ0 + ρ′0 = π in the Witt ring. We have

π − ρ0 = τ(µ + uvkµ)− τ(µ + 〈u, v,−1〉)
= τ(uvkµ+ 〈1,−u,−v〉)
= uvτ(kµ+ 〈uv,−v,−u〉)
= uvτ(kµ+ 〈〈u, v〉〉 − 〈1〉)
= uvτ(kµ0 〈〈d〉〉+ 〈〈d, k〉〉 − 〈1〉)
= uvτ(kµ′0 〈〈d〉〉+ 〈−d〉)
= ρ′0

The proof of Item (2) is complete. To prove Item (3), we need the following
lemma.

Lemma 8.7. Let φ = τ ⊗ ν, where τ is an n-fold Pfister form. Let L/F be an
arbitrary extension such that τL is anisotropic. Then iW (φL) is divisible by 2n.

Proof. Since φL(τ) is hyperbolic, there exists an L-form γ such that (φL)an =
τL⊗γ. In the Witt ring W (L), we have τL · (νL−γ) = 0. Since τL 6= 0 ∈ W (L),
(νL−γ) is a zero-divisor in W (L). By [Lam1, Ch. VIII, Cor. 6.7], dim ν−dim γ
is even. Hence dimφ − dim(φL)an = 2n(dim ν − dim γ) is divisible by 2n+1.
Therefore, iW (φL) is divisible by 2n.

Corollary 8.8. Let φ = τ ⊗ ν be an anisotropic form, where τ is an n-fold
Pfister form and dim ν ≥ 2. Then i1(φ) is divisible by 2n.

Proof. Since φ is anisotropic, τ is also anisotropic. Since dim ν ≥ 2, we have
dim φ > dim τ . The Cassels–Pfister subform theorem shows that τF (φ) is
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anisotropic. Now, Lemma 8.7 shows that i1(φ) = iW (φF (φ)) is divisible by
2n.

Corollary 8.9. Let φ = τ ⊗ ν be an anisotropic form, where τ is an n-fold
Pfister form and dim ν = 2m + 1. Then φ has maximal splitting (i.e., i1(φ) =
2n).

Proof. Since dimφ = 2n+m+2n, Theorem 1.10 shows that 1 ≤ i1(φ) ≤ 2n. From
Corollary 8.8 it follows that i1(φ) is divisible by 2n. Hence i1(φ) = 2n.

Corollary 8.10. Let φ = τ ⊗ ν be an anisotropic form, where τ is an n-fold
Pfister form and dim ν = 2m + 2 with m ≥ 1. Then

• either i1(φ) = 2n+1 (in this case φ has maximal splitting),
• or i1(φ) = 2n (in this case dim(φF (φ))an = 2n+m).

Proof. Since dimφ = 2n+m+2n+1, Theorem 1.10 shows that i1(φ) ≤ 2n+1. From
Corollary 8.8 it follows that i1(φ) is divisible by 2n. Hence i1(φ) = 2n+1 or 2n.
The rest of the proof is obvious.

Now, we return to the proof of Item (3) of Theorem 8.6. Here we can assume
that ρ0 is anisotropic. Corollary 8.9 shows that ρ0 has maximal splitting. Now,
we must verify that ρ is not a Pfister neighbor. Suppose at the moment that
ρ is a Pfister neighbor of π. Then ρ0 is also a Pfister neighbor of π. Item (2)
of Theorem 8.6 shows that ρ is isotropic. Then π is isotropic. Since ρ0 is a
neighbor of π, the form ρ0 is also isotropic. This contradicts our assumption.
Hence ρ is not a Pfister neighbor.

To complete the proof of Item (3) it suffices to verify that (ρ0)F (ρ) is an
anisotropic Pfister neighbor. Suppose that (ρ0)F (ρ) is isotropic. Since ρ0 has
maximal splitting, ρ also has maximal splitting (Theorem 1.11). By [H1, Prop.
6] there exists an extension K/F such that ρK is an anisotropic Pfister neighbor.
Changing the field F by K, we can assume that ρ is an anisotropic Pfister
neighbor. However, we have proved above that ρ is not a Pfister neighbor, a
contradiction. Hence (ρ0)F (ρ) is anisotropic. To prove that (ρ0)F (ρ) is a Pfister
neighbor, we consider the special pair (ρF (ρ), (ρ0)F (ρ)). Since ρF (ρ) is isotropic,
Item (2) of the theorem shows that (ρ0)F (ρ) is a Pfister neighbor. The proof of
Item (3) is complete.

In the proof of Item (4) of Theorem 8.6, we can assume that ρ is anisotropic.
By Corollary 8.10, the form ρ has maximal splitting or i1(ρ) = 2n. If ρ has max-
imal splitting, then there exists an extension K/F such that ρK is an anisotropic
Pfister neighbor ([H1, Prop. 6]). This contradicts Item (3) of the theorem. By
Corollary 8.10, we have i1(ρ) = 2n and dim(ρF (ρ))an = 2n+m. The proof of
Theorem 8.6 is complete.

Definition 8.11. We say that a special pair (ρ, ρ0) is anisotropic, if ρ (and so
ρ0) is anisotropic.

Lemma 8.12. Let (ρ, ρ0) be an anisotropic (n,m)-special pair. Then

• ρ contains no (n+m + 1)-fold Pfister neighbors,
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• ρ0 and ρ are not Pfister neighbors,
• ρ0 is a form with maximal splitting,
• (ρ0)F (ρ) is an anisotropic Pfister neighbor.

Proof. Obvious in view of Theorem 8.6.

Proposition 8.13. Let (ρ, ρ0) be an anisotropic (n,m)-special pair, and (ρ̃, ρ̃0)
be an anisotropic (ñ, m̃)-special pair with n + m = ñ + m̃. Suppose that ρ0 is
isotropic over the function field of ρ̃0. Then n = ñ, m = m̃, dim ρ = dim ρ̃,

dim ρ0 = dim ρ̃0, ρ
st∼ ρ̃, and ρ0

st∼ ρ̃0.

Proof. Since n + m = ñ + m̃, we have 2n+m < dim ρ0, dim ρ̃0 < 2n+m+1. Since
ρ0 and ρ̃0 have maximal splitting and ρ0 is isotropic over the function field of

ρ̃0, Theorem 1.11 shows that ρ0
st∼ ρ̃0.

By Lemma 8.12, the form (ρ0)F (ρ) is a Pfister neighbor. Since ρ0
st∼ ρ̃0, it

follows that (ρ̃0)F (ρ) is also a Pfister neighbor. Applying Theorem 8.6(2) to the
special pair (ρ̃F (ρ), (ρ̃0)F (ρ)), we see that the form ρ̃F (ρ) is isotropic. Analogously,

ρF (ρ̃) is isotropic. Hence ρ
st∼ ρ̃. By Theorem 1.15, dim ρ− i1(ρ) = dim ρ̃− i1(ρ̃).

Taking into account Items (1) and (4) of Theorem 8.6, we have 2n(2m+2)−2n =
2ñ(2m̃+2)− 2ñ. Since n+m = ñ+ m̃, we obviously get n = ñ and m = m̃.

9. Special pairs of degree 4 and unramified cohomology

We recall that if (ρ, ρ0) is an (n,m)-special pair, then 2n+m < dim ρ0 <
dim ρ < 2n+m+1. When we say that a pair is “(n,m)-special”, we always assume
that n ≥ 0 and m ≥ 2.

Definition 9.1. Let (ρ, ρ0) be an (n,m)-special pair. We define the degree of
(ρ, ρ0) by the formula deg(ρ, ρ0) = n +m+ 1.

Since n ≥ 0 and m ≥ 0, the degree d of any special pair satisfies the condition
d = n +m+ 1 ≥ 3.

Example 9.2. Let us consider special pairs of degree 3. Since n ≥ 0, m ≥ 2,
and n+m+1 = 3, we obviously have n = 0 and m = 2. In this case, τ ∈ P0(F )
and µ ∈ P2(F ). Hence τ = 〈1〉 and µ is of the form µ = 〈〈s, r〉〉. Then we get

ρ = 〈〈s, r〉〉′ ⊥ −〈〈u, v〉〉′ = 〈−s,−r, sr, u, v,−uv〉 ,
ρ0 = 〈〈s, r〉〉′ ⊥ 〈u, v〉 . = 〈−s,−r, sr, u, v〉

Thus, ρ is an Albert form, and ρ0 is a 5-dimensional subform of ρ.

In what follows, we are interested in the case when the degree is equal to 4.
Since m ≥ 2 and n ≥ 0, we have exactly two possibilities for special pairs of
degree 4, namely:

(i) n = 1 and m = 2,
(ii) n = 0 and m = 3.

Let us consider consider these cases separately.
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Example 9.3. Let n = 1 and m = 2. In this case, τ ∈ P1(F ) and µ ∈ P2(F ).
Then we can write τ and µ in the forms τ = 〈〈a〉〉 and µ = 〈〈s, r〉〉. We obtain

ρ = 〈〈a〉〉 ⊗ (〈〈s, r〉〉′ ⊥ −〈〈u, v〉〉′) = 〈〈a〉〉 ⊗ 〈−s,−r, sr, u, v,−uv〉 ,
ρ0 = 〈〈a〉〉 ⊗ (〈〈s, r〉〉′ ⊥ 〈u, v〉) = 〈〈a〉〉 ⊗ 〈−s,−r, sr, u, v〉 .

We will say that ρ is a special 12-dimensional form and ρ0 is a special subform
of ρ.

Example 9.4. Let n = 0 and m = 3. In this case, τ ∈ P0(F ) and µ ∈ P3(F ).
Then τ = 〈1〉 and µ can be written in the form µ = 〈〈a, b, c〉〉. We get

ρ = 〈〈a, b, c〉〉′ ⊥ −〈〈u, v〉〉′ ,
ρ0 = 〈〈a, b, c〉〉′ ⊥ 〈u, v〉 .

We will say that ρ is a special 10-dimensional form and ρ0 is a special 9-
dimensional subform of ρ.

Lemma 9.5. Let (ρ, ρ0) be an anisotropic special pair of degree 4 (in particular,

9 ≤ dim ρ0 < dim ρ < 16). Then H̃4
nr(F (ρ)/F ) = Z/2Z.

Proof. By Lemma 8.12, the form (ρ0)F (ρ) is an anisotropic 4-fold neighbor.
Now, we apply Lemma 6.4. This lemma (in particular) shows that either
H̃4
nr(F (ρ)/F ) 6= 0 or H4(F (ρ0, ρ)/F ) 6= 0.
We claim that H4(F (ρ0, ρ)/F ) = 0. To prove this, we note that ρ0 ⊂ ρ, and

hence H4(F (ρ0, ρ)/F ) = H4(F (ρ0)/F ). Since ρ is anisotropic, it follows that ρ0

is not a Pfister neighbor (Lemma 8.12). Hence H4(F (ρ0)/F ) = 0 and therefore
H4(F (ρ0, ρ)/F ) = 0.

Since H4(F (ρ0, ρ)/F ) = 0, it follows that H̃4
nr(F (ρ)/F ) 6= 0. Now, the lemma

follows from Theorem 5.2.

Now, we need the following well-known statement.

Lemma 9.6. • (Pfister, [Pf2, Satz 14]). Let ρ be a 12-dimensional form
from I3(F ). Then there exist a, s, r, u, v ∈ F ∗ such that ρ is similar to the
form

〈〈a〉〉 ⊗ 〈−s,−r, sr, u, v,−uv〉 .
In other words, the form ρ up to similarity coincides with the “special
12-dimensional form” defined in Example 9.3.

• (see e.g., [H2, Th.5.1]). Let ρ be a 10-dimensional form from I 2(F ) with
indC(φ) ≤ 2. Then there exist a, b, c, u, v ∈ F ∗ such that ρ is similar to
the form

〈〈a, b, c〉〉′ ⊥ −〈〈u, v〉〉′ .
In other words, the form ρ up to similarity coincides with the “special
12-dimensional form” defined in Example 9.4.

Corollary 9.7. Let ρ ∈ I2(F ) be either an anisotropic 12-dimensional form
with ind ρ = 1, or an anisotropic 10-dimensional form with ind ρ = 2. Then ρ
does not contain 4-fold Pfister neighbors.
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Proof. By Lemma 9.6, we can assume that ρ is either a special 12-dimensional
form, or a special 10-dimensional form. In any case, Lemma 8.12 shows that ρ
contains no 4-fold Pfister neighbors.

Lemma 9.8. Let ρ be an anisotropic form from I2(F ). Suppose also that ρ is
either a 10-dimensional form with ind ρ = 2, or a 12-dimensional form with
ind ρ = 1. Then ρ is not a Pfister neighbor and H̃4

nr(F (ρ)/F ) = Z/2Z.

Proof. Corollary 9.7 shows that ρ is not a Pfister neighbor. The isomorphism
H̃4
nr(F (ρ)/F ) = Z/2Z follows from Lemmas 9.6 and 9.5.

Corollary 9.9. Let ρ be an anisotropic 11-dimensional form with ind ρ = 1.
Then ρ is not a Pfister neighbor and H̃4

nr(F (ρ)/F ) = Z/2Z.

Proof. Since c(ρ) = 1, we obtain from Lemma 1.21(2) that there exists a 12-

dimensional form γ ∈ I3(F ) such that ρ
st∼ γ. Since ρ is anisotropic, γ is also

anisotropic. By Lemma 9.8, γ is not a Pfister neighbor and H̃4
nr(F (γ)/F ) =

Z/2Z. Since γ
st∼ ρ, the proof is complete (see Lemma 5.1).

Proposition 9.10. Let ρ be an F -form satisfying one of the following condi-
tions:

(a) dim ρ = 12 and ρ ∈ I3(F ),
(b) dim ρ = 11 and c(ρ) = 1,
(c) dim ρ = 10, ρ ∈ I2(F ), and indC(ρ) = 2.

Then

• if ρ is isotropic, then H̃4
nr(F (ρ)/F ) ' Tors CH3(Xρ) ' 0,

• if ρ is anisotropic, then H̃4
nr(F (ρ)/F ) ' Tors CH3(Xρ) ' Z/2Z.

In any case, the homomorphism ε : H̃4
nr(F (ρ)/F ) → Tors CH3(Xρ) is an iso-

morphism.

Proof. If ρ is isotropic, then the proposition is trivial in view of Corollary 3.3
and Lemma 5.1. Hence, we can assume that ρ is anisotropic. By Lemma 9.8 and
Corollary 9.9, the form ρ is not a Pfister neighbor and H̃4

nr(F (ρ)/F ) = Z/2Z.
The claim follows now from Corollary 5.3.

Corollary 9.11. Let φ be a quadratic form of dimension ≥ 10. If dimφ = 10
we suppose in addition that indφ 6= 1. Then

(i) the homomorphism ε : H̃4
nr(F (φ)/F ) → Tors CH3(Xφ) is surjective,

(ii) if φ is not a Pfister neighbor, then the homomorphism ε : H̃4
nr(F (φ)/F ) →

Tors CH3(Xφ) is an isomorphism,
(iii) If φ is a Pfister neighbor, then Tors CH3(Xφ) = 0.

Proof. (i) If dimφ > 12, then Tors CH3(Xφ) = 0 by Theorem 3.1. Hence we can
assume that dimφ = 10, 11, or 12. The standard transfer arguments reduce the
general case to the case where F has no nontrivial odd extensions. By Lemma
1.16, there exists an extension E/F such that the form ρ = φE satisfies one
of the conditions (a)–(c) of Proposition 9.10, and the homomorphism NE/F :
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K(C0(φE)) → K(C0(φ)) is surjective. By Proposition 9.10, the homomorphism
ε : H̃4

nr(E(φ)/E) → Tors CH3(XφE
) is an isomorphism. By Theorem 3.8, the

homomorphism NE/F : Tors CH3(XφE
) → Tors CH3(Xφ) is surjective.

Clearly, the diagram

H̃4
nr(E(φ)/E)

εE−−−−−−−−−→
isomorphism

Tors CH3(XφE
)

NE/F





y

NE/F





y

surjective

H̃4
nr(F (φ)/F )

ε−−−→ Tors CH3(Xφ)

is commutative. Hence, the homomorphism ε is surjective.
(ii) is obvious in view of Item (i) and Theorem 5.2.
(iii) Since φ is a Pfister neighbor, Theorem 5.2(4) shows that the homomor-

phism ε is zero. Since ε is surjective (Item (i)), we have Tors CH3(Xφ) = 0.

10. Proof of the Conjectures 0.8 and 0.9

In this section we prove the conjectures 0.8 and 0.9 (see Theorems 10.5 and
10.6). We start with the following lemma.

Lemma 10.1. Let (ρ, ρ0) be an anisotropic special pair of degree 4. Let E/F
be the extension constructed in Proposition 6.10 and ψ be an F -form. Then

(1) the special pair (ρE, (ρ0)E) is anisotropic,
(2) if ρF (ψ) is anisotropic, then ρE(ψ) is also anisotropic,
(3) if dimψ ≥ 11, then (ρ0)E(ψ) is anisotropic.

Proof. (1) Since (ρ, ρ0) is a special pair of degree 4, it follows that ρ0 is a form
with maximal splitting and 9 ≤ dim ρ0 ≤ 16. By Lemma 8.12, ρ0 is anisotropic
and is not a Pfister neighbor. By Lemma 6.12, (ρ0)E is also anisotropic and is
not a Pfister neighbor. Then Theorem 8.6(2) shows that ρE is anisotropic.

(2) The proof is the same as for Item (1).
(3) The form (ρ0)E is anisotropic and is not a Pfister neighbor (see the proof

of Item (1)). Since ρ0 has maximal splitting, it follows that (ρ0)E has maximal
splitting. Since dimψ ≥ 11, Corollary 1.12 shows that (ρ0)E(ψ) is anisotropic.

Lemma 10.2. Let (ρ, ρ0) be an anisotropic special pair of degree 4, and let ψ
be a form such that ρF (ψ) is isotropic. Then dimψ ≤ 12. Moreover,

• if dimψ = 12, then ψ ∈ I3(F ),
• if dimψ = 11, then c(ψ) = 1.

Proof. Since ρF (ψ) is isotropic, Theorem 8.6 shows that (ρ0)F (ψ) is a Pfister
neighbor. Let E/F be the extension constructed in Proposition 6.10. Obvi-
ously, (ρ0)E(ψ) is a Pfister neighbor. By Lemma 10.1(3), the form (ρ0)E(ψ) is
anisotropic. Hence φE(ψ) is an anisotropic Pfister neighbor, where φ is an arbi-
trary 9-dimensional subform of ρ0. Since H4(E) = 0, Corollary 6.6 shows that
Tors CH3(XψE

) 6= 0. By Theorem 3.1, we have dimψ ≤ 12.
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Now we consider the case dimψ = 11. Since Tors CH3(XψE
) 6= 0, Proposition

3.7(ii) shows that indψE = 1. Hence indψ = 1 (see Theorem 6.10(ii)).
Now, it suffices to consider the case dimψ = 12. Let ψ0 be an 11-dimensional

subform of ψ. Since ρF (ψ) is isotropic, it follows that ρF (ψ0) is also isotropic.
We have proved above that indψ0 = 1. Hence indψ = 1 and indψE = 1. Since
Tors CH3(XψE

) 6= 0, Proposition 3.7(i) shows that d±ψE = 1. Since indψE = 1,
we have ψE ∈ I3(E). Now, Item (v) of Theorem 6.10 shows that ψ ∈ I3(F ).
The proof is complete.

Lemma 10.3. Let (ρ, ρ0) be an anisotropic special pair of degree 4, and let
ψ be a 12-dimensional form such that ρF (ψ) is isotropic. Then ψ ∈ I3(F ),

dim ρ = dimψ = 12, and ρ
st∼ ψ.

Proof. By Lemma 10.2, we have ψ ∈ I3(F ). Since dimψ = 12, we can assume
that ψ is a special 12-dimensional form containing a special 10-dimensional sub-
form ψ0 (see Lemma 9.6 and Example 9.3). Clearly, the special pair (ψ, ψ0) is
anisotropic (since the form ρF (ψ) is isotropic). Now, let E/F be the field exten-
sion constructed in Proposition 6.10. By Lemma 10.1(1), the pairs (ρE, (ρ0)E)
and (ψE , (ψ0)E) are anisotropic.

Since ρF (ψ) is isotropic, (ρ0)F (ψ) is a 4-fold neighbor (Theorem 8.6). By
Lemma 10.1(3), the Pfister neighbor (ρ0)E(ψ) is anisotropic. By Theorem 8.6(3),
the form (ψ0)E(ψ) is also an anisotropic 4-fold Pfister neighbor. By Lemma 6.7,

we have (ψ0)E(ψ)
st∼ (ρ0)E(ψ). Hence, (ρ0)E(ψ,ψ0) is isotropic. Since ψ0 ⊂ ψ, the

form (ρ0)E(ψ0) is also isotropic. By Lemma 8.13, ρE
st∼ ψE and dim ρ = dimψ.

Hence the form ψE(ρ) is isotropic. By Lemma 10.1(2) 8, the form ψF (ρ) is also

isotropic. Since ρF (ψ) and ψF (ρ) are both isotropic, we conclude that ρ
st∼ ψ.

Corollary 10.4. Let (ρ, ρ0) be an anisotropic special pair of degree 4, and let
ψ be an 11-dimensional form such that ρF (ψ) is isotropic. Then indψ = 1,

dim ρ = 12, and ρ
st∼ ψ.

Proof. By Lemma 10.2, we have indψ = 1. By Lemma 1.21(2), there is a

12-dimensional form γ ∈ I3(F ) such that ψ
st∼ γ. Since ρF (ψ) is isotropic and

ψ
st∼ γ, it follows that ρF (γ) is isotropic. Lemma 10.3 shows that dim ρ = 12

and ρ
st∼ γ. Therefore ρ

st∼ γ
st∼ ψ.

Theorem 10.5. Let ρ ∈ I3(F ) be an anisotropic 12-dimensional form. Let ψ
be a form such that φF (ψ) is isotropic. Then dimψ ≤ 12. Moreover,

(1) if dimψ = 12, then ψ ∈ I3(F ) and ψ
st∼ ρ,

(2) if dimψ = 11, then indψ = 1 and ψ
st∼ ρ.

Proof. We can assume that ρ is a special 12-dimensional form containing a
special 10-dimensional subform ρ0. By our assumption, the special pair (ρ, ρ0)

8Here we apply Lemma 10.1(2) for the special pair (ψ, ψ0) over the function field of the
form ρ.
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is anisotropic. Now, the results follow readily from Lemmas 10.2 and 10.3 and
Corollary 10.4

Theorem 10.6. Let ρ ∈ I2(F ) be an anisotropic 10-dimensional form with
indC(φ) = 2. Let ψ be a form of dimension > 10. Then the form ρF (ψ) is
anisotropic.

Proof. We can assume that ρ is a special 10-dimensional form containing a
special 9-dimensional subform ρ0. By Lemma 10.2, dimψ ≤ 12. Hence dimψ =
11 or 12. Then Lemma 10.3 and Corollary 10.4 show that dim ρ = 12, a
contradiction.

11. The group Tors CH3(Xφ) for forms φ ∈ I2(F )

The main goal of this section is the computation of the group Tors CH3(Xφ)
for all forms φ ∈ I2(F ). We start the proof with the following easy lemma.

Lemma 11.1. Let ψ ∈ I2(F ) be a 14-dimensional Pfister neighbor. Then ψ is
hyperbolic.

Proof. By our assumption, there exists a 2-dimensional form µ such that ψ+µ ∈
GP4(F ) ⊂ I2(F ). Since ψ ∈ I2(F ), it follows that µ ∈ I2(F ). Since dimµ = 2,
the form µ is hyperbolic. Hence π is hyperbolic. Therefore ψ = π − µ is also
hyperbolic.

Corollary 11.2. For any 14-dimensional form φ ∈ I 2(F ), we have
H̃4
nr(F (ψ)/F ) = 0.

Proof. The case when ψ is isotropic is obvious (Lemma 5.1). Now we assume
that ψ is anisotropic. Then Lemma 11.1 shows that ψ is not a Pfister neighbor.
In this case the statement is proved in Corollary 5.4

Lemma 11.3. Let ψ be a 14-dimensional form from I2(F ) and let E = F (ψ).

Then for any form φ of dimension ≥ 9, the homomorphism H̃4
nr(F (φ)/F ) →

H̃4
nr(E(φ)/E) is injective.

Proof. Let X = Xφ and Y = Yψ be the projective quadrics corresponding to
the forms φ and ψ. Let us consider the commutative diagram

H4(F ) −−−→ H4(F (X)) −−−→
∐

x∈X(1)

H3(F (x))





y

α





y





y

H4(F (Y )) −−−→ H4(F (X × Y )) −−−→
∐

x∈XF (Y )
(1)

H3(F (Y )(x))





y





y

∐

y∈Y (1)

H3(F (y))
β−−−→

∐

y∈YF (X)
(1)

H3(F (X)(y))
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Clearly, all columns and rows of this diagram are zero sequences. The homol-
ogy group of the first and the second rows coincide with H̃4

nr(F (φ)/F ) and
H̃4
nr(E(φ)/E) respectively. Thus, we must verify that the homology group of

the first row maps injectively to the homology group of the second row. This
is a formal consequence of the following three properties of the diagram:

(i) the homomorphism α is injective,
(ii) the homomorphism β is injective,
(iii) the first column of the diagram is an exact sequence.

Let us verify these properties.
(i) By Theorem 4.4, the homomorphism α is not injective only in the case

when ψF (Xφ) is an anisotropic 4-fold Pfister neighbor, which is impossible in
view of Lemma 11.1.

(ii) The homomorphism β is injective in view of Theorem 4.4.

(iii) The homology group of the first column equals H̃4
nr(F (ψ)/F ). By Corol-

lary 11.2, this group is zero. Hence, the first column is exact.

Corollary 11.4. For any field F there exists an extension E/F with the fol-
lowing properties:

(i) all 14-dimensional forms from I 3(E) are isotropic;
(ii) for all quadratic forms φ over F , we have indφE = indφ,

(iii) for all F -forms φ of dimension ≥ 9, the homomorphism H̃4
nr(F (φ)/F ) →

H4
nr(E(φ)/E) is injective.

(iv) for any F -form φ of dimension ≥ 9 which is not a 4-fold Pfister neighbor,
the form φE is not an anisotropic 4-fold Pfister neighbor.

Proof. Let us construct the fields

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ . . .

as follows. First, we set F0 = F . For n ≥ 1, we define Fn as the free composite
of all fields Fn−1(ψ), where ψ runs over all 14-dimensional forms from I3(F ).
We set E = ∪n≥0Fn. We claim that the field E satisfies all required properties.
Indeed, Item (i) follows from the definition of E; Item (ii) follows from Lemma
1.5; Item (iii) follows from Lemma 11.3 and Item (iv) follows from Corollary
6.14.

Lemma 11.5. Let φ be an F -form which is not an anisotropic 4-fold Pfister
neighbor. Suppose also that φ satisfies one of the following conditions:

• dim φ = 10, φ ∈ I2(F ), and indφ = 4,
• dim φ = 12, φ ∈ I2(F ), and indφ = 2.

Then H̃4
nr(F (φ)/F ) = 0.

Proof. Corollary 11.4 reduces the proof to the case where all 14-dimensional
forms from I3(F ) are isotropic. Then Lemma 3.13 shows that Tors CH3(Xφ) =

0. By Theorem 5.2(3), we have H̃4
nr(F (φ)/F ) = 0.

Corollary 11.6. Let φ be an F -form satisfying one of the following conditions:
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• dim φ = 10, φ ∈ I2(F ), and indφ = 4,
• dim φ = 12, φ ∈ I2(F ), and indφ = 2.

Then Tors CH3(Xφ) = 0. Moreover, TorsGiK(Xφ) = 0 for all i ≤ 3.

Proof. The first statement follows from Lemma 11.5 and items (ii) and (iii) of
Corollary 9.11. The second statement is obvious in view of Theorem 3.1.

Corollary 11.7. Let φ be a form satisfying one of the following conditions:

• dim φ = 10 and indφ ≥ 4,
• dim φ = 12 and indφ ≥ 2.

Then Tors CH3(Xφ) = 0.

Proof of Corollary 11.7. Corollaries 2.7 and 11.6 show that TorsGiK(Xφ) = 0
for all i ≤ 3. Hence Tors CH3(Xφ) = TorsG3K(Xφ) = 0.

Proposition 11.8. Let φ be an anisotropic quadratic form from I 2(F ). Then
the group Tors CH3(Xφ) is nonzero only in the following cases:

• dim φ = 8 and φ is similar to a 3-fold Pfister form,
• dim φ = 10 and indφ = 2,
• dim φ = 12 and indφ = 1 (i.e., φ ∈ I 3(F )).

In all cases listed above, the group Tors CH3(Xφ) is isomorphic to Z/2Z.

Proof. In case dimφ ≤ 8, the proposition is proved in [Kar1]. Suppose that
dim φ > 8. By Theorem 3.1, we can assume that dimφ = 10 or 12. If dimφ =
10, we necessarily have indφ ≥ 2 (otherwise, the form φ is isotropic by Pfister’s
theorem). Now, the required result follows readily from Corollary 11.7 and
Proposition 9.10.

12. Proof of Theorems 0.5 and 0.6

In this section we complete the computation of the third Chow group of
quadrics Xφ for all forms of dimension ≥ 9 (Theorem 0.5). Besides, we prove
our main results concerning unramified cohomology (Theorem 0.6 and Corollary
0.7). In the proofs we will use the following terminology: we say that φ is of
type (9-a), or (10-a), etc., if the form φ satisfies the corresponding conditions
given in the formulation of Theorem 0.5.

Lemma 12.1. Let φ be a form of dimension ≥ 9 such that Tors CH3(Xφ) 6= 0.
Then φ belongs to the list of forms given in Theorem 0.6.

Proof. First, we consider the case when φ is isotropic. Corollary 3.4 shows that

• either dimφ = 10 and φ = π ⊥ H, where π is similar to an anisotropic
3-fold Pfister form,

• or dimφ = 9 and φ = µ ⊥ H, where µ is an anisotropic 7-dimensional
Pfister neighbor.

Obviously, in the case dimφ = 10, the form φ has type (10-a). Let us consider
the case dimφ = 9. Let d ∈ F ∗ be such that π = µ ⊥ 〈−d〉 ∈ GP3(F ). Then
we have φ = µ ⊥ H = µ ⊥ 〈−d, d〉 = π ⊥ 〈d〉. Hence φ is of type (9-a).
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In the following, we can assume that φ is an anisotropic form. By Theorem
3.1, it suffices to consider the following four cases separately: dim φ = 9, 10,
11, or 12.

dimφ = 12. Since Tors CH3(Xφ) 6= 0, Corollary 11.7 shows that ind φ = 1.

From Proposition 3.7(i) it follows that φ ∈ I2(F ). Since indφ = 1 and φ ∈
I2(F ), we have φ ∈ I3(F ). Therefore φ is of type (12-a).

dimφ = 11. Since Tors CH3(Xφ) 6= 0, Proposition 3.7(ii) shows that indφ =
1 and hence φ has type (11-a).

dimφ = 10. If φ ∈ I2(F ), then Proposition 11.8 shows that indφ = 2.

We get a form of type (10-b). Now, we can assume that φ /∈ I2(F ). Then
d = d±φ /∈ F ∗2. By Corollary 3.10, φF (

√
d) is not hyperbolic. Proposition 3.7(iii)

and Corollary 11.7 show that indφ = 1. Hence, there exists a c ∈ F ∗ such that
φ ⊥ −c 〈〈d〉〉 ∈ I3(F ) (see, e.g., Lemma 1.19(i)). Now, it suffices to verify
that the 12-dimensional form γ = φ ⊥ −c 〈〈d〉〉 is anisotropic (see Item (10-c)
of Theorem 0.5). Assume the contrary. Then dim γan ≤ 10 and Corollary 1.9
shows that γ is Witt equivalent to some τ ∈ GP3(F ). In the Witt ring W (F ) we
have φ = γ + c 〈〈d〉〉 = τ + c 〈〈d〉〉. Since dimφ = 10 = 8 + 2 = dim(τ ⊥ c 〈〈d〉〉),
it follows that φ ' τ ⊥ c 〈〈d〉〉. Since ind τ = 1, Lemma 3.11 shows that
Tors CH3(Xφ) = 0. We get a contradiction.

dimφ = 9. Proposition 3.7(iv) shows that indφ ≤ 2. First, we suppose
that d = detφ ∈ DF (φ). Then φ has the form φ = τ ⊥ 〈d〉, where τ is an 8-
dimensional form from I2(F ). Then Lemma 3.12(ii) shows that ind τ = indφ =
1. Then τ ∈ GP3(F ). We get a form of type (9-a).

Now, we can assume that d = detφ /∈ DF (φ). In this case, the 10-dimensional
form µ = φ ⊥ 〈−d〉 ∈ I2(F ) is anisotropic. Pfister’s theorem shows that
indφ = ind µ 6= 1. Since indφ ≤ 2, we have indφ = 2. We claim that φ has the
type (9-b). We have already proved that indφ = 2 and d /∈ DF (φ). Thus, it
suffices to verify that φ contains no 7-dimensional Pfister neighbors. This has
been proved in Lemma 3.12.

Lemma 12.2. Let φ be one of the forms listed in Theorem 0.5. Suppose also
that the form φ is not of type (9-a) or (10-a). Then the homomorphism

ε : H̃4
nr(F (φ)/F ) → Tors CH3(Xφ) is an isomorphism and H̃4

nr(F (φ)/F ) '
Tors CH3(Xφ) ' Z/2Z

Proof. If dimφ = 11 or 12 the statement is obvious in view of Proposition 9.10.
If dimφ = 9 or 10, it suffices to verify the following two properties of the form
φ:

(i) φ is not a Pfister neighbor,
(ii) H̃4

nr(F (φ)/F ) 6= 0.

After this, the lemma will be obvious in view of Corollary 5.3.
Now, let us study the forms case by case.
(9-b). Since d = det φ /∈ DF (φ), the form ρ := φ ⊥ 〈−d〉 is anisotropic.

Clearly, dim ρ = 10, ρ ∈ I2(F ) and ind ρ = indφ = 2. In view of Lemma 9.6,
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we can assume that ρ is a “special 10-dimensional form” containing a special
9-dimensional subform ρ0 (Example 9.4).

Since indφ = 2, there exists a 3-dimensional form µ such that φ ⊥ µ ∈ I3(F )
(see e.g, Lemma 1.19(ii)). Set ρ̃ = φ ⊥ µ. Clearly, dim ρ̃ = 12. First,
we suppose that ρ̃ is isotropic. Then ρ̃ is Witt equivalent to some form
π ∈ GP3(F ) (Corollary 1.9). In the Witt ring, we have φ + µ = ρ̃ = π.
Then π − φ = µ. Hence, φ and π contain a common subform of dimension
1
2
(dim π + dim φ − dimµ) = 1

2
(9 + 8 − 3) = 7. Therefore, φ contains a 7-

dimensional Pfister neighbor of π. This contradicts condition (9-b). Thus, we
have proved that ρ̃ is anisotropic. In view of Lemma 9.6, we can assume that
ρ̃ is a “special 12-dimensional form” which contains a special 10-dimensional
subform ρ̃0 (Example 9.3).

We have constructed two anisotropic special pairs (ρ, ρ0) and (ρ̃, ρ̃0) such that
φ ⊂ ρ and φ ⊂ ρ̃. Corollary 9.7 shows that φ is not a Pfister neighbor. We
have realized Item (i) of our plan. Since φ ⊂ ρ and φ ⊂ ρ̃, the forms ρF (φ) and
ρ̃F (φ) are isotropic. Theorem 8.6 shows that (ρ0)F (φ) and (ρ̃0)F (φ) are Pfister
neighbors. We get two elements ẽ4(Pf((ρ0)F (φ))) and ẽ4(Pf((ρ̃0)F (φ))) of the

group H̃4
nr(F (φ)/F ). If at least one of these elements is nonzero, the proof is

complete (see item (ii) of our plan of the proof).
Thus, we can assume that ẽ4(Pf((ρ0)F (φ))) = ẽ4(Pf((ρ̃0)F (φ))) = 0.
Let E/F be the field extension constructed in Proposition 6.10. By Lemma

10.1(1), the forms ρE and ρ̃E are anisotropic. Hence, (ρ0)E and (ρ̃0)E are also
anisotropic. Since H4(E) = 0, we have e4(Pf((ρ0)E(φ))) = e4(Pf((ρ̃0)E(φ))) =
0 in the group H4

nr(E(φ)/E) ⊂ H4(E(φ)) (without “tilde” !). By Theorem
4.1, Pf((ρ0)E(φ))) = Pf((ρ̃0)E(φ)) = 0. This means that both Pfister neighbors
(ρ0)E(φ) and (ρ̃0)E(φ) are isotropic. Since (ρ0)E and (ρ̃0)E are anisotropic forms

with maximal splitting (Theorem 8.6), it follows that (ρ0)E
st∼ φE and (ρ̃0)E

st∼
φE (see Theorem 1.11). Hence, (ρ0)E

st∼ (ρ̃0)E. By Proposition 8.13, we get
dim ρ = dim ρ̃, which contradicts the equations dim ρ = 10 and dim ρ̃ = 12.
This completes the proof in case (9-b).

(10-b). In this case the result of the lemma is covered by Proposition 9.10.
(10-c). Let φ, d, and τ be as in (10-c). Since dim τ = 12 and τ ∈ I3(F ),

we can assume that τ is a “special 12-dimensional form” containing a 10-
dimensional special subform τ0 (Example 9.3). Since φ ⊂ τ , Corollary 9.7
shows that φ is not a Pfister neighbor. This completes the proof of Item
(i) of our plan. To prove Item (ii), it suffices to verify that the element

ẽ4(Pf((τ0)F (φ))) is non-zero in the group H̃4
nr(F (φ)/F ). Assume the contrary,

ẽ4(Pf((τ0)F (φ))) = 0. Let E/F be the extension constructed in Proposition 6.10.
By Lemma 10.1(1), the form τE is anisotropic. Hence (τ0)E is an anisotropic
form which is not a Pfister neighbor. On the other hand, the form (τ0)E(ψ)

is a Pfister neighbor because the form τE(ψ) is isotropic. Since H4(E) = 0,
we get e4(Pf((τ0)E(φ))) = 0 ∈ H4(E(φ)). Hence, the Pfister neighbor (τ0)E(φ)
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is isotropic. Since (τ0)E is an anisotropic form with maximal splitting, The-
orem 1.11 shows that φE also has maximal splitting. Since indφ = 1, it fol-
lows that φE(

√
d) ∈ I3(F ). Since dimφ = 10, Pfister’s theorem shows that

φE(
√
d) is isotropic. Taking into account that φE has maximal splitting, we have

dim(φE(
√
d))an ≤ 6. Now, the Arason–Pfister Hauptsatz implies that φE(

√
d)

is hyperbolic. By Item (vi) of Proposition 6.10, we conclude that φF (
√
d) is

hyperbolic. This contradicts condition (10-c). The proof is complete.

Proof of Theorem 0.6. If Tors CH3(Xφ) = 0, then ε is an isomorphism by The-
orem 5.2(3). Now, we can assume that Tors CH3(Xφ) 6= 0. By Lemma 12.1, the
form φ belongs to the list of forms given in Theorem 0.5. Since φ is anisotropic
and is not a Pfister neighbor, it follows that φ is not of type (9-a) or (10-a).
Then Lemma 12.2 completes the proof.

Lemma 12.3. If φ has type (9-a) or (10-a), then Tors CH3(Xφ) = Z/2Z.

Proof. (9-a). If φ = π ⊥ 〈d〉 is isotropic, then π can be written as µ ⊥ 〈−d〉,
where µ is a 7-dimensional anisotropic Pfister neighbor. Then φ = µ ⊥
〈−d, d〉 = µ ⊥ H. By Corollary 3.3, we have Tors CH3(Xφ) = Z/2Z. Now
we can assume that φ is anisotropic. Since ind φ = 1, we have s = iS(φ) = 4
(Lemma 1.1). By [Kar1, Th. 3.8], the set

U = {i | TorsGiK(Xφ) 6= 0}
consists exactly of s = 4 elements. Since dimXφ = dimφ − 2 = 7, we have
U ⊂ {0, 1, . . . , 7}. By Theorem 3.1, TorsGiK(Xφ) = 0 for i ≤ 2. Hence,
U ⊂ {3, 4, 5, 6, 7}. By [Sw], we have TorsG7K(Xφ) = TorsG0K(Xφ) = 0.
Hence, U ⊂ {3, 4, 5, 6}. Since U consists of 4 elements, we get U = {3, 4, 5, 6}.
In particular, 3 ∈ U . Hence, Tors CH3Xφ ' TorsG3K(Xφ) = Z/2Z.

(10-a). Let φ = π ⊥ H, where π is similar to an anisotropic Pfister form. In
this case Tors CH3(Xφ) = Z/2Z in view of Corollary 3.3.

Proof of Theorem 0.5. The theorem is a formal consequence of Lemmas 12.1
12.2, and 12.3.

Proof of Corollary 0.7. Let us consider the homomorphisms

H̃4
nr(F (φ)/F )

α→ H̃4
nr(F (φ)/F,Q/Z(3))

β→ Tors CH3(Xφ),

where α is the homomorphism induced by the natural homomorphism

H4(F (φ)) → H4(F (φ),Q/Z(3))

and β is the homomorphism defined in [KRS1, Th.6(1)]. We must prove that
α is surjective. If φ is a 4-fold Pfister neighbor or isotropic, then the group
H̃4
nr(F (φ)/F,Q/Z(3)) is zero by [KRS1, Th.3(1) and Prop.2.5(a)]. Therefore,

α is surjective. If φ is anisotropic and is not a 4-fold Pfister neighbor, then
the composition β ◦ α is surjective by Theorem 0.6. By [KRS1, Th.6(1)], the
homomorphism β is injective. Hence α is surjective.
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13. Forms of height 2 and degree 3

.
The main goal of this section is to prove Conjecture 0.11 in the case when

n = 3 and charF = 0. We will use the following theorem of A. Vishik.

Theorem 13.1. (A. Vishik, [Vi3, Vi4]). Let F be a field of characteristic zero.
Let φ be an even-dimensional F -form of height 2 and degree d. Then

dimφ = 3 · 2d−1, dimφ = 2d+1, or dimφ = 2N − 2d for some N ≥ d+ 1.

The proof of this theorem depends on Voevodsky’s announced theorem 9 that
Milnor’s conjecture is valid ([Vo]). We need below only the following special
case of Theorem 13.1: If φ is a form of height 2 and degree 3, then dimφ 6= 14.
This special case was proved by Vishik in his thesis [Vi1, Statement 1.2.1] under
the additional hypothesis

√
−1 ∈ F ∗.

Corollary 13.2. Let F be a field of characteristic 0, and let φ ∈ I3(F ) be an
anisotropic 14-dimensional form. Then dim(φF (φ))an = 12.

Proof. The form φF (φ) is nonhyperbolic because φ is not similar to a Pfister
form. If dim(φF (φ))an 6= 12, then dim(φF (φ))an ≤ 8 by Pfister’s theorem. Since
φ ∈ I3(F ), we get dim(φF (φ))an ∈ GP3(F (φ)). Hence ht(φ) = 2 and deg φ = 3.
However, Theorem 13.1 implies that dimφ 6= 14 for all forms of height 2 and
degree 3, a contradiction.

Corollary 13.3. Let F be a field of characteristic zero, and τ ∈ I3(F ) be an
anisotropic form of dimension 12 or 14. Let ψ be a form of dimension > 12.
Then dim(τF (ψ))an ≥ 12.

Proof. If dim τ = 12, the statement follows from Theorem 10.5. Hence we
can assume that dim τ = 14. By Corollary 13.2, we have dim(τF (τ))an = 12.
Applying Theorem 10.5 once again, we see that (τF (τ))an is anisotropic over
the function field of the form ψF (τ). Hence dim(τF (τ,ψ))an = 12. Therefore
dim(τF (ψ))an ≥ dim(τF (τ,ψ))an = 12.

Below we will use the following terminology: we say that an element u ∈
Hn(F ) is a symbol, if there exist a1, . . . , an ∈ F ∗ such that u = (a1, . . . , an).

The following lemma is well known (it is an easy consequence of the iso-
morphism H3(F ) ' I3(F )/I4(F ) and the “linkage properties” of Pfister forms
[EL3]).

Lemma 13.4. Let u = (a1, a2, a3) + (b1, b2, b3) ∈ H3(F ). The the following
conditions are equivalent:

• the element u is a symbol,
• the form (〈〈a1, a2, a3〉〉 ⊥ − 〈〈b1, b2, b3〉〉)an is zero or belongs to GP3(F ).

9More precisely, the proof of Theorem 13.1 is based on the whole technique developed by
Voevodsky in his proof of Milnor conjecture. We also note that, for good forms over a field
of characteristic not 2, this result was proved earlier (see [H5] and [HR, §3]).
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Proposition 13.5. (cf. [Kah1, Prop.5]). Let F be a field of characteristic
zero. Let ψ be an F -form of dimension > 12. Let u ∈ H 3(F ) be an element
such that uF (ψ) is a symbol. Then u is also a symbol.

Proof. Suppose that u is not a symbol. By [Kah1, Prop.5], u is a sum of at
most two symbols. Thus, u = (a1, a2, a3) + (b1, b2, b3) for suitable ai, bi ∈ F ∗.
Let q = (〈〈a1, a2, a3〉〉 ⊥ − 〈〈b1, b2, b3〉〉)an. Clearly, dim q ≤ 14. Since u is not a
symbol, Lemma 13.4 shows that dim q > 8. By Pfister’s theorem, dim q ≥ 12.
Hence dim q = 12 or 14. By Lemma 13.3, dim(qF (ψ))an ≥ 12. By Lemma
13.4, the element uF (ψ) is not a symbol, which contradicts the hypothesis of the
proposition.

Proposition 13.6. Let F be a field of characteristic zero, and ψ be an F -form
of dimension > 12. Let π be a 3-fold Pfister form over F (ψ). Suppose also that
xπ is unramified for some element x ∈ F (ψ)∗ (i.e., xπ ∈ Wnr(F (ψ)/F )). Then
π is defined over F by a 3-fold Pfister form (i.e., there exists τ ∈ P3(F ) such
that π ' τF (ψ)).

Proof. Since xπ ∈ Wnr(F (ψ)/F ), we have e3(π) = e3(xπ) ∈ H3
nr(F (ψ)/F ).

Since dimψ > 8, the homomorphism H3(F ) → H3
nr(F (ψ)/F ) is surjective

(see [KRS1, Cor.8(2a)]). Hence, there exists an element u ∈ H3(F ) such
that uF (ψ) = e3(π). Since e3(π) is a symbol, Proposition 13.5 shows that u
is also a symbol. Let a1, a2, a3 ∈ F ∗ be such that u = (a1, a2, a3), and let
τ = 〈〈a1, a2, a3〉〉. We have e3(τF (ψ)) = uF (ψ) = e3(π). By Theorem 4.1, we have
π = τF (ψ). The proof is complete.

Corollary 13.7. Let F be a field of characteristic zero and φ be a nongood
F -form of degree 3 and height 2. Then dimφ ≤ 12.

Proof. Suppose that dim φ > 12. Since φ has degree 3 and height 2, it follows
that (φF (φ))an ∈ GP3(F (φ)). Hence, there exists π ∈ P3(F (φ)) and x ∈ F (φ)∗

such that (φF (φ))an = xπ. By definition, xπ ∈ Im(W (F ) → W (F (φ))). Hence
xπ ∈ Wnr(F (φ)/F ). By Proposition 13.6, π is defined over F by a Pfister form.
This contradicts the definition of nongood forms.

We recall the conjecture of Bruno Kahn concerning the classifications of forms
of height 2.

Conjecture 13.8. (see [Kah2, Conjecture 7]). Let φ be a quadratic form of
height 2 and degree n ≥ 2. Then at least one of the following conditions holds:

• (excellent forms) φ ' aρ⊗ τ ′, where a ∈ F ∗, ρ ∈ Pn(F ) and τ ′ is the pure
subform of τ ∈ Pm(F ) with m ≥ 2.

• (good nonexcellent forms) φ ' ρ ⊗ ψ, where ρ ∈ Pn−1(F ) and ψ is a
4-dimensional form.

• (nongood forms) φ ' ρ⊗ γ, where ρ ∈ Pn−2(F ) and γ is an Albert form.

Theorem 13.9. Let F be a field of characteristic zero. Then Conjecture 13.8
is true for n ≤ 3.
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Proof. M. Knebusch proved Conjecture 13.8 for all excellent forms. B. Kahn
proved Conjecture 13.8 for n = 2 ([Kah2]). Moreover, he proved the second
item of this conjecture (i.e., for good forms) for n = 3 (see [Kah2, Th.2.12]).
To complete the proof of the theorem it suffices to classify nongood forms of
height 2 and degree 3.

Since deg φ = 3 and ht(φ) = 2 > 1, we have φ ∈ I3(F ) and dimφ > 8. By
Pfister’s theorem, we have dimφ ≥ 12. On the other hand, Corollary 13.7 shows
that dimφ ≤ 12. Hence, φ is a 12-dimensional form from I3(F ). Therefore,
φ = 〈〈a〉〉 ⊗ γ, for suitable a ∈ F ∗ and an Albert form γ (Lemma 9.6).

Corollary 13.10. Let F be a field of characteristic zero, and let φ be an F -
form of degree 2 and height 3. 10 Then dimφ 6= 14. If dim φ = 16, then
φ ∈ GP4,2F (i.e. φ ' k 〈〈a〉〉 ⊗ (π′ ⊥ 〈b〉), where π′ is the pure subform of some
3-fold Pfister form).

Proof. This follows from Theorem 13.9 and [Lag, Th.6].
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1, 47–66.
[Kah3] Kahn, B. Quelques remarques sur le u-invariant. Sèm. Théor. Nombres Bordeaux (2)
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